
Communication with Super Flexible Messaging

Alexey S. Fedosov and Gregory D. Benson
Department of Computer Science

University of San Francisco
San Francisco, CA, USA

{fedosov, benson}@cs.usfca.edu

Abstract Super Flexible Messaging (SFM) provides a pow-
erful and elegant message passing abstraction for transfer-
ring arbitrary data between remote processes. SFM achieves
the simplicity of stream-oriented mechanisms and the abil-
ity to transfer structured data as found in high-level remote
object invocation systems. Leveraging off of dynamic typing
and named arguments in functions, SFM offers a simple syn-
tax for sending structured data as attribute-value pairs be-
tween processes. A programmer can easily concentrate on
algorithmic development because the specification of data to
be transferred is done exclusively using asend() invocation.
Therecv() call can selectively choose incoming messages by
specifying concrete attribute-value pairs or by constraining
matches to a subset of attribute values. Our current imple-
mentation is in Python, but the SFM concept can be ported to
other dynamically typed languages with named argument syn-
tax. This paper presents the SFM mechanism, its implementa-
tion, some SFM examples, and a performance evaluation.

Keywords:Python, message passing, communication

1 Introduction

Interfaces for data communication are crucial to the de-
velopment and execution of distributed-memory pro-
grams. As such, a multitude of communication mech-
anisms is available to programmers. The ubiquitous
sockets interface for TCP/IP [14] is provided by most
operating systems and exposed as a higher-level mod-
ule in most programming languages (e.g., the standard
Pythonsocket module [2] and the Javanet.Socket
class [7]). Higher-level middleware mechanisms such
as remote procedure call and remote method invocation
are built on top of a sockets interface. Such mechanisms
include Sun RPC, Java RMI, CORBA remote objects,
SOAP, and XML-RPC [4]. In high-performance com-
puting, the Message Passing Interface (MPI) [10] pro-
vides a standard set of mechanisms for point-to-point

and collective communication. Finally, several paral-
lel and distributed programming languages incorporate
dedicated syntax and semantics for achieving commu-
nication between remote processes [1].

All existing mechanisms are useful in appropriate
contexts and they all have advantages and disadvan-
tages. Our observation is that the low-level mechanisms
provide simplicity in concept, but require detailed han-
dling of data. Likewise, the higher-level mechanisms
hide some of the complexities of the underlying low-
level mechanism, but introduce new burdens on the
programmer. For example, TCP sockets require a re-
ceiver to handle partial reads. Also, explicit serializa-
tion is required for sending structured data. In contrast,
complete objects can be accessed using a remote ob-
ject system such as Java RMI. Such systems require
some form of interface definition, separate compilation
tools, and a configured execution environment. Elegant
mechanisms exist in dedicated distributed programming
languages, but their usage is limited because their im-
plementations are typically not widely supported and
mainstream developers tend to use more general pur-
pose programming languages.

We have developed a new communication mecha-
nism calledSuper Flexible Messaging(SFM) that pro-
vides a simple way to send arbitrary, dynamically typed
messages between remote processes. Like traditional
low-level mechanisms, SFM allows for the explicit
transfer of data between processes, and like higher-
level mechanisms, SFM automatically serializes struc-
tured data. SFM handles all the low-level details and
allows a programmer to send structured data without
any additional interface specification. In SFM, the loca-
tion in the source code wheresend() is invoked serves
as the specification. The sender and receiver implic-
itly agree on the type of data transferred. SFM can be
viewed as an extension of function invocation seman-
tics in dynamically typed languages. In such languages,
the caller and callee agree on the types of data passed in

and returned by convention. No static type checking is
performed. Type errors are determined at run time.

The main operations in SFM aresend() andrecv().
Thesend() operation allows the programmer to spec-
ify an arbitrary list of attribute-value pairs. Each value
can be an instance of a serializable type supported
by the host language. Therecv() operation allows
the programmer to specify matching criteria also as
attribute-value pairs. In addition, it is possible to match
incoming messages by specifying a subset of attribute
values. This form of message passing allows develop-
ers to focus on algorithmic rather than messaging de-
tails. It also encourages rapid development, because the
amount and type of data to be transferred need only be
changed at thesend() andrecv() call sites.

The current SFM prototype is implemented in the
Python programming language [11]. We achieve a con-
cise notation for SFM using Python’s named argument
syntax for function invocation. In this way, a complete
SFM message is specified in a singlesend() call. SFM
supports the transfer of all Python objects that can be se-
rialized (pickled) including immutable types, lists, dic-
tionaries, and user-defined objects. Received messages
are returned as Python objects in which the object at-
tributes are the names of the message attributes. There-
fore, the syntax for accessing the received data is also
very concise. The Python lambda type is used to con-
strain matching based on attribute values.

The development of SFM grew out of necessity in the
development of a new Python research framework for
distributed programming called River [12]. We wanted
an efficient send/receive mechanism so we decided to
build our underlying protocol on top of sockets. Prior
experience in implementing MPI from scratch [5] led us
to focus on developing a fixed message structure. How-
ever, we did not yet know what we wanted in the mes-
sage structure. We concluded a lazy approach would
be best to encourage rapid development, so we decided
that a message could hold anything. To date, SFM has
been used to develop the River prototype and several
River extensions including an implementation of MPI
and MapReduce [6]. The SFM concept has been ex-
tremely successful in facilitating rapid development of
both distributed run-time systems and applications.

The rest of this paper is organized as follows. Sec-
tion 2 describes the SFM mechanism and interfaces.
Section 3 presents example SFM usage. Section 4 pro-
vides some details of our Python-based SFM implemen-
tation. Section 5 summarizes experimental results for
communication with SFM. Section 6 talks about our ex-
perience using SFM in implementing the River frame-
work. Section 7 makes some concluding remarks.

2 Mechanism

The SFM mechanism assumes a distributed execution
environment in which processes can be named and dis-
covered. SFM associates a receive queue with each
named process. The SFMsend() operation must ex-
plicitly specify a process name as the destination. Mes-
sages are deposited on the receive queue for a pro-
cess. Therecv() operation retrieves qualifying mes-
sages from the receive queue.

An SFM message is a set of attribute-value pairs. An
attribute is always a string, whereas a value can be of
any type, such as integer, string, list, object, etc. Two
special attributes are reserved and have special mean-
ing: src anddest. Thedest attribute is required when
sending and specifies the name of the destination pro-
cess. Thesrc attribute is added automatically by the
SFM system and contains the name of the originating
process. If the programmer leaves outdest or attempts
to providesrc in a send() operation, an exception
is raised. Thus, sending a message can be as simple
as passing all the desired attributes and their values as
named parameters to the send function. The syntax for
send() is:

send(dest=<process> [, <attribute>=<value>] ...)

Note that it is possible to send an empty mes-
sage for synchronization purposes. Typically, at least
one attribute-value pair is provided in addition to the
dest=<process> pair. Consider the following exam-
ple:

send(dest=’B’, tag=’input’, data=[1,2,3,4,5])

Note that the attribute names are completely arbi-
trary. Also, data can come from the surrounding scope:

newdest = ’p1’
rec = { name : ’Dave’, id : 24 }
send(dest=newdest, protocol=’db’, idrec=rec)

As mentioned previously, attribute values can be any
Python type that can be pickled. This includes most
Python types including most immutable types, lists, dic-
tionaries, and user-defined objects.

The SFMrecv() function is similar to thesend()
function in that it takes a variable number of attribute-
value pairs as arguments. However, the attribute-value
pairs constrain which message should be received. Each
received message is guaranteed to have at least the
attribute-value pairs specified in therecv() call. The
return value is an SFM message object whose attributes
can be accessed using the member variable (dot) nota-
tion. The defaultrecv() function is blocking; thus, if
no messages match the specified criteria, the caller is

blocked until a matching message arrives. The syntax
of recv() is:

message = recv([, <attribute>=<value>] ...)

In its simplest form, receiving without any arguments
will simply return the first message in the queue in first-
in, first-out order.

msg = recv()

A more common scenario is to receive a message
from a particular source. Note that thesrc attribute will
appear in all messages, even though it is not explicitly
specified by the sender.

m = recv(src=’A’)

Matching can be done on any number of attributes
but the following conditions have to be satisfied: all
attributes must appear in the message and their values
must be equal to the values specified in therecv() call.
Note that this does not mean the message must only
have the specified attributes, just that the specified at-
tributes must be present in the message. Here we ask
for messages that came from processA and have the
protocol attribute set to the valueinput:

m = recv(src=’A’, protocol=’input’)

Since the attribute names are completely arbitrary,
matching can be done on any attribute. If a mes-
sage does not have one or more attributes specified in
recv(), then the message will not be accepted (it will
remain in the queue to be matched later). As shown in
Example 1, accessing the attribute values of a message
is identical to accessing member variables of Python ob-
jects.

Example 1 Simple SFM Example

1 # Process A
2 mylist = range(10)
3 send(dest=’B’, mytag=42, input=mylist)

1 # Process B
2 m = recv(mytag=42)
3 print m
4 print m.src
5 print m.input
6 print m.mytag

Output
Message: {’dest’: ’B’, ’src’: ’A’, ’mytag’: 42, \

’input’: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}
A
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
42

Additionally, an attribute passed torecv() may be
paired with a lambda expression or a named function

rather than a value. In this case, no direct comparison
is done but instead that function is invoked with the at-
tribute value (from the message) as the only argument
if the attribute exists in the message. If the function re-
turnsTrue, the attribute is considered to match. If all
other attributes match, the message is returned. This al-
lows the user to perform more sophisticated matching
such as simulating a logical OR expression, or string
matching. For example, the following code will match
a message if it contains a ’tag’ attribute equal to one of
the two specified values:

m = recv(tag=lambda x: x == 23 or x == 42)

As mentioned above, several variants of therecv()
function exist. All of them take a variable number
of attribute-value pairs as arguments but vary in their
blocking effect and return value. Table 1 summarizes
them.

Name Description

recv Blocking receive (most commonly used).
recv nb Non-blocking receive. Raises an exception

if no matches are found.
peek Non-blocking peek. ReturnsTrue or False

based on match result.
regcb Registers a callback function to be invoked

when a message matches the specified attributes.

Table 1: Various Receive Functions

The difference between the defaultrecv() and
recv_nb() functions is thatrecv() blocks on a condi-
tion variable when no message matching the specified
attributes has been found, whereasrecv_nb() raises
an exception instead of blocking. Thepeek() func-
tion works in exactly the same way but returnsTrue or
False, indicating whether a match has been found with-
out modifying the queue. Finally, an alternate method
of receiving a message is registering a user-defined call-
back function with the queue. This is done by specify-
ing the function as well as the attribute-value pairs to
match. In this case when a message matching the spec-
ified attributes arrives, the user-defined function will be
invoked with the message as its only argument. The
user needs to register a callback function only once but
it will be called for every matching message until un-
registered.

3 Examples

This section presents some real examples of SFM us-
age. The code presented here runs in the River frame-

work [12]. As such, the code snippets use the River
process naming scheme in which processes are named
by universally unique identifiers, or UUIDs [8]. Also,
thesend() andrecv() functions are provided by a vir-
tual resource super class. A virtual resource is the River
notion of a process.

Example 2 illustrates a simple way of implementing
parallel dot-product computation. This excerpt is taken
from the River version of parallel conjugate gradient
(CG) solver. It includes a very naive implementation
of the MPIAllreduce() function. First, the local dot
product is calculated on line 2, then all processes send
their local result to the root process (called parent in
River terminology) on line 5. The parent collects the
local results from all the processes on line 11 and sums
them up, then sends the global sum back to each pro-
cess on line 15. Finally, all the participating processes
receive and return the global result on line 6.

Example 2 Parallel Dot-Product

1 def pdot(self, x, y):
2 result = dot(x, y)
3
4 if self.uuid != self.parent:
5 self.send(dest=self.parent, result=result,
6 tag=’pdot’)
7 m = self.recv(src=self.parent, tag=’allreduce’)
8 return m.result
9
10 else:
11 for w in self.workers:
12 m = self.recv(tag=’pdot’)
13 result += m.result
14
15 for w in self.workers:
16 self.send(dest=w, result=result,
17 tag=’allreduce’)
18
19 return local

Example 3 shows how SFM is used to implement
flow control in our River implementation of MPI. This
code fragment allows large messages to be sent in
chunks so that a complete copy of a data buffer is not
needed. The SFM notation makes it relatively easy
to implement a chunk protocol and ensure that data is
transferred in the proper order.

All the major MPI peer-to-peer and collective func-
tions are implemented usingmpi_send_buf() and
mpi_recv_buf(). They allow for the sending of small
messages in an eager fashion or large messages in a se-
quence of chunks. The parameters include:buf (a list
of simple values),offset (index intobuf), count (the
number of values to send),datatype (the data type of
the values inbuf), src (the rank of the sender),dst (the
rank of the receiver),tag (an MPI idiom for naming
transfers), andcomm (the communication namespace).

Example 3 Flow control in MPI

def mpi_send_buf(self, buf, offset, count, datatype,
dest, tag, comm):
destUuid = comm.rankToUuid(dest)
chunksize = self.mpi_getchunksize(datatype, count)
sendsize = count
if sendsize <= chunksize: # send small buf

self.send(dest=destUuid, tag=tag,
buf=buf[offset:offset+count], start=0, end=count,
size=count, mtype=’small’, last=True)

else: # send large buf
last = False; start = offset; end = start + chunksize
while True:

self.send(dest=destUuid, tag=tag,
buf=buf[start:end], start=start-offset,
end=end-offset, size=chunksize, mtype=’large’,
last=last)

m = self.recv(src=destUuid, tag=tag, ack=True)
if last: break
start += chunksize
end = start + chunksize
if (start + chunksize) >= (offset + count):

end = offset + count
chunksize = end - start
last = True

def mpi_recv_buf(self, buf, offset, count, datatype,
src, tag, comm):
srcUuid = comm.rankToUuid(src)
while True:

m = self.recv(src=srcUuid, tag=tag)
if m.mtype == ’large’:

self.send(dest=srcUuid, tag=tag, ack=True)
buf[m.start+offset:m.end+offset] = m.buf[0:m.size]
if m.last: break

The small message code sends the entirebuf in a sin-
gle message. By setting up the proper values forstart,
end, andsize, as well as settinglast to True, the re-
ceiver is given all the information needed to process the
send request. The large message code walks through
the buf in chunksize increments. On each iteration,
the values forstart, end, andsize are updated appro-
priately. Once the last chunk in identified,last is set to
True.

In both examples given above, the data to be sent
is completely specified at thesend() call sites. This
encourages rapid development because the program-
mer need only modify the attribute-value pairs in the
send() parameter list and message attribute access at
the recv() call site to add or change the data to be
transmitted. Furthermore, the programmer need not
worry about the structure of the data because any type
can be sent as a value. Thus, SFM provides an ex-
tremely concise way to send arbitrary structured data.

4 Implementation

The SFM model consists of two main modules: the
packet module that provides the basic encoding and de-

coding functionality and the queue module that pro-
vides packet matching at the receiving side. We call
an SFM message aSuper Flexible Packet(SFP). This
section details sending, receiving, and queue matching.

4.1 Sending

Sending consists of serializing the specified attribute-
value pairs and sending the serialized packet over the
network (e.g., via a socket connection.) An SFP is cre-
ated by passing a list of named parameters to the send
function, which first encodes them into a binary for-
mat suitable for transmission over the network. Since
named parameters in Python appear as a dictionary, we
accomplish this by serializing the dictionary (or pick-
ling, as it is called in Python) and adding minimal
header information. The SFP header consists of two
fields: a magic signature string and the length of the se-
rialized payload. As mentioned earlier, an attribute is a
string and the value can be of any serializable type. At
least one attribute, the name of the destination process,
is required. Additionally, another attribute, the name of
the source process, is added to the dictionary automat-
ically. An exception is raised if no destination is spec-
ified or if the user provides his own source. Once the
data is encoded, it can be sent over a socket connection.

The SFM model does not include any low-level net-
work communication routines, instead such communi-
cation is provided by the distributed environment. In
the case of our River framework we have designed a so-
phisticated socket connection management scheme that
includes a connection pool and support for multiplexing
several logical connections (between processes) over a
single physical socket connection. This makes no dif-
ference to the SFM model, since it only deals with rep-
resenting the data, rather than its transportation.

4.2 Receiving

Receiving a message is a more involved process that en-
compasses: (1) reading data from the network; (2) de-
coding the data into SFPs; (3) adding SFPs to the queue
of the appropriate process; and (4) performing matching
to return an SFP back to the caller.

Unlike sending, there is no explicit low-level receive
function available to users that would read data from
a socket and return SFP objects in one fell swoop.
Again, this is because the SFM model has no provisions
for low-level data transfer details but instead focuses
on structured representation. In the case of the River
framework there is a separate network input thread re-
sponsible for centrally receiving all data from socket

connections. The data is then decoded into SFPs and
placed into the message queue of the appropriate pro-
cess, as specified by the destination attribute within the
packet. Thus, the receive functions available to appli-
cation programmers operate by retrieving packets from
the queue rather than blocking on I/O.

The decode function operates as follows. First, the
header is decoded and parsed to determine whether a
packet has been received in its entirety and to ensure
that it is a valid SFP. If the packet is incomplete, it
is not processed until more data is available to com-
plete the remaining part. Otherwise, the payload is
deserialized into a Python dictionary and then used to
construct a packet object that represents the SFP. The
packet class overrides the internalgetattr method,
allowing users to access the packet’s data by referenc-
ing attribute names using member field (dot) notation.
This lets the user refer to the attributes contained within
the packet using the same names as originally specified
by the sender.

Two things are returned: a list of successfully un-
serialized packet objects (in case the input buffer con-
tained more than one), which could be empty if there
was not enough data to complete even one packet, and
any leftover data, which could be an empty buffer, or
the entire input buffer. Since the decode function does
not preserve any state, the leftover data should be saved
by the caller and then prepended to the next input data
obtained from the network before the next round of de-
coding is attempted. If the decode function determines
that the input buffer does not contain a valid serialized
SFP, an exception is raised. This should never be the
case when a reliable low-level communication protocol,
such as TCP, is employed.

Once we have a list of SFP objects, we determine the
destination process to which each packet was sent by us-
ing thedest attribute within. The packet is then added
to the message queue of that process. All these steps
happen within the context of the network input thread,
which lastly performs a notify on a condition variable
attached to the message queue, in case a process was
blocked on arecv().

4.3 Queue Matching

The message queue consists of an ordered list of re-
ceived SFPs (in a first-in, first-out order) and a condi-
tion variable, which is used to block a process when no
packet can be returned. In its basic form the receive
function (the queue get method), like the send function,
takes a variable number of attribute-value pairs (again,
as Python named parameters) but uses them as a key to

match against packets in the queue. That is, for a packet
to match, all attribute-value pairs passed to the receive
function must appear in the packet and have the ex-
act same value. To perform matching we linearly walk
the queue of packets and check the specified attributes
against every packet. If an attribute was specified to
the receive function but does not appear in a packet or
its value in a packet is different than the one specified,
matching fails and we proceed to the next packet. The
basic receive function is blocking and if no packets are
present in the queue or none of them match, the calling
process is put to sleep on a condition variable. Once
a new packet is added to the queue, the network input
thread will signal on the condition variable, waking up
the sleeping process and allowing it to retry matching.

If the value of an attribute is a lambda expression or a
function, rather than a simple data type, no direct com-
parison is done but instead that function is invoked with
the attribute value (from the packet) as the only argu-
ment. If the function returnsTrue, the attribute is con-
sidered to match. If all other attributes match, the packet
is returned.

Additionally, we provide other variants of receive,
such as a non-blocking receive that raises an exception
if no packets were matched and a peek function that
returns a boolean value indicating whether a matching
packet can be retrieved from the queue. The matching
semantics are exactly the same as the basic receive: any
number of attribute-value pairs to perform the matching
on are passed in as input parameters. Moreover, an ap-
plication can register a callback function, which will be
invoked with the packet as a single argument if the lat-
ter matched the specified attributes. In River, such call-
backs can be invoked asynchronously by the network
thread.

5 Results

To determine the cost of the SFM mechanism we con-
structed a simple ping-pong benchmark. Using this
benchmark we compare performance of different types
of mechanisms that could be used to send data between
Python processes. For the experimental platform we
used two identical machines with the following config-
uration: dual Opteron 270 processors, 4 gigabytes of
RAM, and a Gigabit NIC. Both were connected to an
isolated Gigabit network.

Table 2 shows the latency and bandwidth of four dif-
ferent implementations of a ping-pong benchmark that
transmits a character array of a given size back and forth
between two processes. The first version,sockets,
simply sends the array from sender to receiver and back

using the Python interface to the socket library; no en-
coding of the data is done. Thepickle version is an
example of how a programmer could use thepickle
module in Python to transfer structured data to a re-
mote machine. It demonstrates the cost of pickling a
Python object and sending it over the network. Be-
cause we do not know the size of pickled data a pri-
ori, we prepend a small header that contains this infor-
mation to the data. This incurs a performance penalty
due to an additional copy before sending. TheSFM ver-
sion usesencode() anddecode() functions with the
named argument notation provided by the SFM model
to serialize the data. Finally,SFM w/Q implementation
adds trivial use of the queue mechanism provided by the
SFM model by putting the received packet to the queue
and then retrieving it. Because this involves operations
on a condition variable within the queue, it results in an
additional performance loss.

128 bytes 16 kb 64 kb

mechanism lat bw lat bw lat bw
sockets 48 20 220 568 642 778
pickle 73 16 275 453 964 518
SFM 84 14 285 439 979 511
SFM w/Q 97 13 300 417 984 508

Table 2: Ping-Pong Latency (lat, microseconds) and
Bandwidth (bw, Mbps)

Both SFM versions introduce overhead that results in
lower bandwidth and higher latencies but significantly
simplify the code that a programmer would normally
have to write to send structured data across the network.
As discussed earlier, the SFM queue also allows power-
ful packet matching based on attributes and their values.
These results represent the worst-case scenario since a
typical distributed program would consist of both com-
munication and computation. Additionally, our queue
implementation has not been optimized yet. These pre-
liminary results indicate that any additional Python pro-
cessing in the critical path of network communication
results in significant overhead. For instance, both en-
coding and decoding functions incur overhead due to
copying of buffer data. Also, Python libraries do not
provide any scatter/gather I/O operations, which would
be beneficial in this case.

6 Experience

Super Flexible Messaging has been successfully used in
our implementation of the River framework [12], a par-

allel and distributed programming environment written
in Python that targets conventional applications. The
River core interface is based on a few fundamental con-
cepts that enable the execution of code on multiple ma-
chines and provide a flexible mechanism for communi-
cation among them.

The main features of River include a simple program-
ming model, easy program deployment, and reliable ex-
ecution. The goal is to allow a user to leverage multiple
machines, i.e., desktops and laptops, to improve the per-
formance of everyday computing tasks. We provide an
easy way for the application programmer to exploit the
low-hanging fruit of parallelism in their tasks without
requiring in-depth knowledge of parallel computing or
familiarity with complicated parallel programming in-
terfaces.

We employ SFM for basic communication between
processes, both at the system and application levels.
All the internal communication within River, such as
machine discovery, allocation, and process deployment
is achieved through the use of SFM. Any possible
conflicts between system and application packets are
avoided by giving application processes different names
from the system processes. (In River the processes are
named with universally unique identifiers, or UUIDs.)
The flexibility and ease of use of this model combined
with powerful and elegant features of the Python pro-
gramming language have made the rapid prototyping
of our system extremely efficient and allowed us to
explore many different approaches for which we oth-
erwise would not have time. For instance, the flex-
ibility afforded by the SFM model has allowed us to
quickly implement extensions to the River framework,
such as an implementation of the MPI library, remote
access methods, a new task farming language called
Trickle [3], and a MapReduce extension [6].

7 Conclusions

Super Flexible Messaging allows developers to focus
on program logic and not on cumbersome data transfer
details. With SFM there is no need to define a packet
structure or a protocol format and the data being ex-
changed consists of simple attribute-value pairs, where
an attribute is a string, and the value can be of any serial-
izable type. The Python implementation of SFM lever-
ages off the Python concept of named parameters, pro-
viding a straightforward, yet very powerful syntax for
sending and receiving data. SFM can be implemented in
other dynamically typed languages that support named
parameters (or simulated named parameters) in function
invocation such as Ruby [13] and Lua [9].

Acknowledgments

We thank members of the River research group for
their feedback and technical support: Yiting Wu, Brian
Hardie, Tony Ngo, Jennifer Reyes, and Joe Gutierrez.
We also thank Peter Pacheco for reviewing an earlier
version of this paper. This work was partially supported
by a University of San Francisco faculty development
research grant.

References
[1] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming

languages for distributed computing systems.ACM Computing
Surveys, 21(3):261–322, September 1989.

[2] David M. Beazley.Python essential reference. Sams Publishing,
third edition, 2006.

[3] G. D. Benson and A. S. Fedosov. Python-based distributed
programming with trickle. InProceedings of the International
Conference on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, Nevada, USA, June 2007. CSREA
Press.

[4] Kenneth P. Birman. Reliable Distributed Systems: Technolo-
gies, Web Services, and Applications. Springer, first edition,
2005.

[5] S. G. Caglar, G. D. Benson, Q. Huang, and C. Chu. USFMPI:
A multi-threaded implementation of MPI for linux clusters.In
Proceedings of the 15th IASTED International Conference on
Parallel and Distributed Computing and Systems, Marina del
Rey, CA, December 2003.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified
data processing on large clusters. InProceedings of Operating
Systems Design and Implementation, pages 137–150. USENIX,
2004.

[7] Cay S. Horstmann and Gary Cornell.Core Java 2, Volume II:
Advanced Features. Prentice-Hall PTR, seventh edition, 2004.

[8] Paul J. Leach, Michael Mealling, and Richard Salz. A univer-
sally unique IDentifier (UUID) URN namespace. Internet pro-
posed standard RFC 4122, July 2005.

[9] The programming language Lua. http://www.lua.org.

[10] Peter S. Pacheco.Parallel programming with MPI. Morgan
Kaufmann Publishers, 1997.

[11] The Python programming language. http://www.python.org.

[12] River. http://www.cs.usfca.edu/river.

[13] The Ruby programming language. http://www.ruby-lang.org.

[14] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff.UNIX
network programming: The Sockets Networking API, volume 1.
Prentice-Hall PTR, third edition, 2004.

