
State Management for Distributed Python Applications

Gregory D. Benson
Department of Computer Science

University of San Francisco
benson@cs.usfca.edu

Abstract

We present a novel state management mechanism that
can be used to capture the complete execution state of dis-
tributed Python applications. This mechanism can serve as
the foundation for a variety of dependability strategies in-
cluding checkpointing, replication, and migration. Python
is increasingly used for rapid prototyping parallel programs
and, in some cases, used for high-performance applica-
tion development using libraries such as NumPy. Building
on Stackless Python and the River parallel and distributed
programming environment, we have developed mechanisms
for state capture at the language level. Our approach al-
lows for migration and checkpointing of applications in het-
erogeneous environments. In addition, we allow for pre-
emptive state capture so that programmers need not intro-
duce explicit snapshot requests. Our mechanism can be ex-
tended to support application or domain-specific state cap-
ture. To our knowledge, this is the first general checkpoint-
ing scheme for Python. We describe our system, the imple-
mentation, and give some initial performance figures.

1 Introduction

The future of dependable distributed computing will rely
on better integration of fault tolerance mechanisms at all
levels of computer systems. The programming language
run-time system is a natural location for dependability sup-
port. In the long-term, new programming language seman-
tics with replication and failure handling will help program-
mers write fault-tolerant software. However, much more re-
search, development, and experimentation will be required
before new languages are adopted. Our belief is that using
a high productivity language such as Python [10] can allow
researchers to explore a larger design space when compared
to conventional statically-typed languages.

We have developed the River framework to facilitate the
development of reliable distributed Python programs and
the rapid prototyping of reliable parallel programming sys-

tems. River is implemented entirely in Python and is based
on a few fundamental concepts that enable the execution
of code on multiple virtual machines and provide a flexible
mechanism for communication. These concepts are sup-
ported by the River run-time system, which manages auto-
matic discovery, connection management, naming, process
creation, and message passing. The simplicity and elegance
of the River core combined with Python’s dynamic typing
and concise notation make it easy to rapidly develop dis-
tributed applications and a variety of parallel run-time sys-
tems for new programming models.

To support different forms of fault tolerance based
on state redundancy [4] we have developed an inte-
grated state management mechanism within River. The
base mechanism supports system-level and programmer di-
rected checkpointing for arbitrary River applications. Thus
application-level modifications are not required, but an ex-
plicit interface is provided if the application desires to con-
trol the replication strategy. The base mechanism can be ex-
tended to support various forms of state management, such
as memory exclusion [8], incremental checkpointing [7] or
diskless checkpointing [9, 1]. The River state management
facility can be used to support checkpointing, load balanc-
ing, and whole or partial program migration in clusters and
grids. We have implemented our state management sup-
port on top of Stackless Python [14, 13]. We use Stackless
Python in an unconventional manner and designed a novel
system-call mechanism to ensure the separation of process
state from the rest of the River system.

This paper describes the design and implementation of
the state management mechanism we have built in the River
programming environment for distributed Python programs.
The rest of this paper is organized as follows. Section 2
provides brief overviews of Python, Stackless Python, and
River. Section 3 describes the basic River interfaces for
state management and some usage scenarios. Section 4 de-
tails the implementation. Section 5 presents the results of
some basic experimentation of checkpointing Python ap-
plications. Section 6 makes some concluding remarks and
gives directions for future work.

2 Background

2.1 Python

Python [10] is a high-productivity programming lan-
guage used in a wide variety of domains such as web ser-
vices, program steering, data analysis, and conventional
scripting. It is also widely used for artificial intelligence,
game engines, and scientific computing [12]. Python’s con-
cise syntax combined with dynamic typing, built-in data
structures, and a rich standard library facilitates rapid pro-
gram implementation. The language implementation is also
very portable across a variety of processor architectures
and operating systems. However, Python’s rich semantics
and interpreted execution incurs run-time overhead. This
penalty is often offset by savings in development time and
the use of high-performance C libraries such as NumPy [6].
We use Python both for prototyping and application devel-
opment.

An import aspect of Python data types is that almost all
of them can be easily serialized with the pickle module.
This module creates a byte stream of a Python object in-
stance which can be unpickled at a later time.

2.2 Stackless Python

The standard Python implementation, written in C, is re-
ferred to as CPython. This implementation executes Python
programs by first compiling all source files into Python
bytecode. The bytecode is then interpreted by the Python
run-time system. To support function calls and method in-
vocation, the run-time system uses the C stack to recursively
call the main interpreter loop. This means that as Python
programs run, their execution state consists of high-level
Python object instances and C activation records. This tight
coupling of architecture-specific state and language objects
makes it difficult to capture the state of a Python program.

Stackless Python [13, 14] is a modified implementation
of CPython that solves the state capture problem by de-
coupling the C stack from the Python execution stack. A
significant result of this modification is that the execution
state of a Python program can be pickled to a byte stream.
This functionality serves as the basis for our distributed
state management mechanism. In addition to decoupling
the C stack, Stackless Python also adds language support for
cooperative tasklets and communication between tasklets
using channels. These features make it possible to sup-
port thousands of cooperative execution streams in a single
Python instance.

2.3 River

River is a Python-based framework for distributed com-
puting [11]. River consists of a set of Python classes that

provide a core interface and the underlying run-time system.
A River program consists of one or more virtual resources
(VRs) that execute on River virtual machines (VMs); see
Figure 1. VMs can exist locally or remotely and VRs are
named using UUIDs [5]. A VM is simply a Python inter-
preter running the River run-time system. An initiating VR
can discover existing VMs and deploy itself or other VRs
onto selected VMs. Once running, VRs communicate with
each other using a mechanism called super flexible mes-
saging (SFM) for sending and receiving dynamically typed
packets [3]. SFM makes it easy to send arbitrary data as
attribute-value pairs and selectively receive messages based
on matching attribute names and subsets of attribute values.
See Listing 1 for a minimal River program that discovers
available VMs then starts VRs on these VMs. Each child
VR sends a message back to the initiating VR.

 VM (Initiator)

initiate

main
deploy()

deploy()

 VM

main

 VM

main

 VM

main

send()

send()

send()

QVR

VR

VR

Q

Q

QVR

deploy()

Figure 1. The Core River Abstractions

Listing 1 A Simple River Program

from socket import gethostname
from river.core.vr import VR

class Hello(VR):
def initiate(self):

discovered = self.discover()
allocated = self.allocate(discovered)
deployed = self.deploy(allocated,

module=self.__module__)
self.vrlist = [vm.uuid for vm in deployed]
return True

def main(self):
if self.parent is None:
for vr in self.vrlist:
msg = self.recv(src=vr)
print ’%s says hello’ % msg.myname

else:
self.send(dest=self.parent, myname=gethostname())

River was originally conceived with fault-tolerance in
mind. The Core API and underlying programming model
supports execution transparency through “soft” names via
UUIDs and decoupled message queues. The rest of this pa-
per describes the checkpointing and migration mechanism
we have implemented in River.

2

3 Interfaces

The River state management mechanism can be used to
capture the entire execution state of a running virtual re-
source (VR). This state includes all objects reachable by
the containing VR object instance. It also includes all of
the objects reachable from the run-time stack. Optionally,
the state of the VR message queue can also be captured.
Capturing the queue is most useful for consistent distributed
state capture. From the programmer’s perspective, the VR
object instance serves as a container for all run-time state.
The VR object is analogous to an OS process. The state
management facility can be invoked internally by an appli-
cation program in a synchronous fashion or externally by a
separate utility in an asynchronous fashion.

3.1 Internal Interface

For internal usage, the VR interface provides a
snapshot() method to capture program state at the request
of the application. In its most basic form the target pa-
rameter specifies a filename to store the snapshot. In ad-
dition, the exit_vr boolean parameter specifies if the VR
should exit or continue executing. Similarly, the exit_vm
boolean parameter specifies if the VM should exit or con-
tinue running. This interface allows applications to create
checkpoints at regular intervals or at user prompted points.
When a snapshot is restored, execution begins immediately
after the invocation to the snapshot() method. Restoring
the saved state of a single VR can be done on the com-
mand line by passing a --restore filename argument to
river, or it can be done externally using a state controller
utility.

Listing 2 Simple Usage of Internal State Management

from river.core.vr import VR

class Hello(VR):
def main(self):

for i in range(10):
print i
if i == 4:
self.snapshot(target=’state_ex.vrst’,

exit_vr=True, exit_vm=True)

Listing 2 shows how to use the snapshot() interface
to save the state of the current VR. This example iterates
though a list of integers, saving the state when i == 4. In
this example, we exit both the VR and the VM.

The snapshot() interface can be extended by supply-
ing a state handler function object to the target parameter
rather than a string. In this way, the application can specify
precisely what should be done with the snapshot state. For
example, the application may choose to put the state in a
specific location on disk, on a network file system, or send

Listing 3 Internal State Management with State Handler

import cPickle as pickle
from river.core.vr import VR

def state_handler(vrstate):
vrfile = open(’/net/state_ex_cust.vrst’, ’w’)
pickle.dump(vrstate, vrfile)
vrfile.close()

class Hello(VR):
def main(self):

for i in range(10):
print i
if i == 4:
self.snapshot(target=state_handler,

exit_vr=False, exit_vm=False)

the state to a network service. The handler can also be used
to create replicas or to store the state in memory. Listing 3
shows how to supply a state handler function.

3.2 External Interface

River applications can also be manipulated through an
external interface. This interface allows utility programs
to pause running VRs, capture VR state, and restore VR
state to available VMs. This interface can be used to imple-
ment full distributed program checkpointing and migration.
We provide a simple state controller utility that performs
a straightforward coordinated checkpoint [2]. The utility
works by first locating all the VRs associated with a run-
ning application. It then issues pause commands to each
VM running an application VR. Once paused, a message
balancing algorithm is used to ensure all in-flight messages
reach their destination VR queues. Note that the in-flight
messages are not processed once received. They are now
considered part of the VR state. Once all messages are bal-
anced, the VR state on each VM can be captured. The re-
sulting state can be migrated to idle VMs or collected and
written to disk. The VR state can be written in a distributed
manner to the local VM file systems or the state of each VR
can be collected and combined onto the file system that is
associated with the state controller utility.

Listing 4 Simple Usage of External State Management

import cPickle as Pickle
from river.core.state import StateClientVR

class save(StateClientVR):
def main(self):

vmlist = self.discover(status=’*’)
self.pause(vmlist)
self.balance(vmlist)
vrcontainer_list = self.getvrs(vmlist)
vrfile = open(filename, ’w’)
pickle.dump(vrcontainer_list, vrfile)
vrfile.close()

The external state management interface is provided

3

through a special StateClientVR class. So, state manage-
ment utilities are also VRs that are given special methods
for finding running VMs and VRs and manipulating their
state. Listing 4 shows a minimal distributed snapshot appli-
cation using the StateClientVR interface. A more robust
implementation would do more error checking and would
not assume that all discovered VMs are a part of the same
distributed application. It is also possible to have each VM
save the snapshot state locally rather than collect the state
onto a single machine. This approach can speed up check-
points by using local disks and eliminate the transfer of state
over the network.

3.3 Extensions

Both the internal and external state management inter-
faces are simple but very flexible. They can be used to
build programming model and application-specific check-
pointing and redundancy. In addition to these interfaces,
it is also possible to have fine-grain control over state cap-
ture on an object-by-object basis. Because we utilize the
Python pickle module, programmers can write classes that
can determine the state that should be saved for each object
using the getstate() and setstate() instance methods.
The getstate() method is called implicitly when an ob-
ject is being pickled, and likewise, the setstate() method
is called implicitly when the serialized snapshot is being
unpickled.

Listing 5 Object-specific State Capture

class LookupTable(object):
def __init__(self, size):

self.size = size
self.fill()

def fill(self):
self.table = range(self.size)

def lookup(self, i):
return self.table[i]

def __getstate__(self):
d = {}
d[’size’] = self.size
return d

def __setstate__(self, d):
self.size = d[’size’]
self.fill()

Listing 5 shows a simplified LookupTable class that can
eliminate state during capture, then recompute the object
state when the VR is restored. The getstate() method
simply creates a temporary dictionary with the state to be
saved during a snapshot. In this case we need the size at-
tribute. The setstate() method restores size and recom-
putes the table with the fill() method. This interface can
be used to support memory exclusion [8].

3.4 Discussion

The River state management interface has proven effec-
tive at creating arbitrary snapshots of serial and distributed
Python programs. However, the interface currently has two
limitations. First, there is no strict containment of VR state
as application VRs and the River run-time system exist in
the same execution space. So, programmers must be sure
not to “pollute” the VR instance with references to internal
River objects. Similarly, only state reachable via the VR in-
stance will be in the snapshot. Therefore, global data will
not be included unless explicit references from the VR ob-
ject or descendent objects are made to global objects. So far,
this requirement has not proven to be a significant burden.

The second and more significant limitation concerns I/O
modules. Just as in most other checkpoint systems, open
I/O descriptors are troublesome. This is because open I/O
descriptors involve state that exists in the OS and may in-
volve state beyond the local machine in the case of a socket
connection. Most checkpointing systems require applica-
tions to reestablish all I/O descriptors once a snapshot has
been restored. We currently take the same approach. How-
ever, we are investigating providing wrapper classes for I/O
modules so that certain I/O descriptors can be reestablished
in an automated fashion.

4 Implementation

This section describes the key implementation details to
support state capture of Python programs in River. We ex-
plain the essentials of virtual resource (VR) execution in
River and how we decouple VR state from the rest of the
River run-time system. As previously mentioned, we rely
on Stackless Python in order to save the execution state of
a running Python thread. We explain how we utilize the
Stackless interface to arbitrarily preempt a running VR and
capture the VR state. In order to allow VRs to issue com-
mands to the River run-time system, we introduce atomic
system calls that prevent preemption at undesirable points
in execution. We show how blocking River system calls in-
teract with Stackless execution. Finally, we describe how
we implement distributed checkpointing.

4.1 River Execution

As described in Section 2.3, a River program is simply a
Python program with a main class that inherits from the VR
class. The River run-time system consists of a Python inter-
preter and River VM support code. The resulting execution
environment consists of three Python threads: a network
thread, a control VR, and the application VR (see Figure 2).

The network thread is used to manage socket-based com-
munication with other River VMs. The network thread mul-

4

code

Q

code

Q
Net

Control VR Application VR

Figure 2. River VM Execution

tiplexes connections using the Python select() OS call.
It can handle TCP connections as well as UDP packets
for multicast support. On receipt of a packet, the network
thread converts the serialized byte stream to a River mes-
sage object instance, which is placed in the proper destina-
tion VR queue. The control VR is a special VR that can
perform tasks such as allocation and deployment. The con-
trol VR can be extended to handle remote console access
and to respond to state control requests.

Application VRs can be specified for launch on the com-
mand line or they can be deployed by existing VRs. While
River supports multiple application VRs per River VM, by
convention we only run one application VR per River VM
because Python does not support true parallel execution of
OS threads.

4.2 Using Stackless Python

Our state management mechanism utilizes Stackless
Python [14, 13] to capture the arbitrary run-time state of
VRs. As explained in Section 2.2, Stackless Python re-
moves the use of the C run-time stack from program execu-
tion in the Python interpreter. This feature combined with
the notion of tasklets, allows dynamic program state to be
pickled just as any other Python object instance. River state
management can capture any program that utilizes standard
data types and any class that can be pickled. Exceptions in-
clude the array data type and many Python libraries that are
wrappers for C libraries.

4.3 Tasklets and Decoupling VR State

River can run both on standard CPython and on Stackless
Python. Early implementations existed only for CPython.
When running on CPython, application VRs are executed
in the context of a Python thread, which is mapped to an
OS thread. When running River on Stackless Python, the
application VR is executed as a tasklet, which, in turn, is
executed in the context of a Python thread. The host Python
thread is referred to as the main tasklet. This strategy allows
us to control the execution of the application VR.

Listing 6 Executing a VR Tasklet

self.vr.t = stackless.tasklet(self.vr.main)()

while stackless.getruncount() > 1:
self.vr.t = stackless.run(1000)
if self.peek(type=’__state__’):

m = self.recv(type=’__state__’)
Process state messages ’pause’ and ’snapshot’
...

if self.vr.t:
self.vr.t.insert()

else:
break

The code in Listing 6 shows a simplified version of the
main VR tasklet control loop in River. The key to sup-
porting asynchronous checkpointing is the ability to pre-
empt the executing VR tasklet. This achieved with the
stackless.run(1000) method; it tells the interpreter to
execute a specified number of Python bytecodes. The re-
turn value of stackless.run() is the tasklet that was pre-
empted or finished. In our case, this will always be the ap-
plication VR tasklet. At this point we can see if the VR has
received any control messages, such as a pause request or a
snapshot request.

Running the application VR as a tasklet, then attempting
to save the VR state does not work without careful han-
dling. Notice that the tasklet is an attribute of the VR ob-
ject instance. So, to serialize the VR plus the tasklet, we
need to simply pickle the VR instance. The problem is that
when the VR is pickled, the system attempts to serialize en-
tire state of the VR, the tasklet, and any state reachable by
these objects. However, the methods provided by the base
VR class have references and make calls into the River VM
objects. Because these objects are reachable through the
VR object, serialization results in an attempt to serialize the
entire River VM run-time system.

VR Q

code

send()
recv()

VRI
Q

VR

code

TaskletThread

self.vri

Figure 3. Decoupling VR State

In order to support the serialization of just the applica-
tion VR state, we introduce the notion of an internal VR
object, called VRI. The VRI class contains all of the hard
references previously contained in the VR. Now, only the
application supplied state is contained in the VR object.
However, during VR execution we create references to im-
portant system call methods such as send() and recv().
The references are handled via a single VRI reference (See

5

Figure 3). By decoupling system supplied VR state from
application supplied state, we can easily unlink the VRI ref-
erence when we need to checkpoint the VR.

4.4 River System Calls

The base VR class provides methods to discover and al-
locate remote River VMs as well as to send and receive
messages among VR instances. These methods are imple-
mented in terms of lower-level River VM classes. We call
such methods River system calls because they require ac-
cess to the internals of the River run-time system. While
the River system calls do not cross a protection boundary
like conventional OS system calls, they do cross a reference
boundary that introduces River VM runtime references into
the call stack of the application VR. As such, we need to
make sure that we do not try to snapshot the state of a VR
while it is in the middle of a River system call.

To avoid this River VM reference entanglement, we
make all River VM system calls atomic relative to
stackless.run() preemption. Stackless Python pro-
vides an interface to prevent such preemption via the
set_atomic(value) tasklet method. This allows the cur-
rent tasklet to turn off preemption (value = True) or turn
it on (value = False). The return value of set_atomic()
is the previous atomic state, which allows for recursive
atomic sections.

System call atomicity solves one of the problems with
preventing entanglement, but the system calls themselves
can introduce references from the VR object into the River
VM. Therefore, the system calls need to be soft references
that can be created when we start or resume a VR and un-
linked when we need to snapshot a VR. We provide system
call atomicity and soft references using Python closures.
For each system call we create a VR method that points to
a closure that performs system calls atomically and ensure
that after the atomic operation there are no links from the
VR back to the River VM.

Listing 7 System Call Generator

def gensyscall_state(self, name):
def newsyscall(*args, **kwargs):

t = stackless.current
curatomic = t.set_atomic(True)
sysmethod = self.syscalls[name]
rv = sysmethod(*args, **kwargs)
del sysmethod
t.set_atomic(curatomic)
return rv

return newsyscall

The code given in Listing 7 is called for each River sys-
tem call (e.g., send(), recv(), peek(), discover(), etc.).
An important aspect of this code is that the system call is
looked up by name in a syscalls table to get a reference.

This allows the system call table to be deleted just before a
snapshot is taken. When a saved VR is restored, we need
to populate the system call table just before resuming ex-
ecution. Also notice the reference is needed only for the
duration of the operation. After the system call is invoked
the reference is removed from the current stack activation
record. This insight did not come immediately. We ini-
tially assumed that the reference would be removed from
the stack on return from the wrapper method. However, it
turns out that because preemption can occur between any
two bytecodes, we periodically ran into the case where we
had completed the system call but not yet returned from the
wrapper. So, in our final solution we do not turn preemption
back on until we are certain the reference to the River VM
is removed.

The last significant system call implementation issue in-
volves blocking calls. Currently, the only blocking call
is the recv() call which blocks the VR while waiting
for incoming messages. We use the same approach de-
scribed above for ensuring recv() is atomic relative to
stackless.run() preemption. However, in order to block,
the VR message queue uses a Python Condition variable.
When new messages arrive, the VR thread is resumed
and the messages can be processed. In order to support
asynchronous pausing and snapshots, we created special
__state__ messages that can only be created by the sys-
tem. When the message queue receives such a message,
it returns back to the VR system call wrapper, which then
yields the VR tasklet as if it had been preempted. The VR
run loop can then respond to __state__ messages.

4.5 Saving and Restoring VR State

With the assurance that the VR state will be decoupled
from the VRI state (and the River VM), saving the VR exe-
cution state amounts to the following steps:

1. Create a state container object

2. Remove the VRI reference in the VR

3. Remove system call table (VRI references)

4. Add message queue reference to container

5. Pickle VR (includes the VR tasklet and queue)

6. Add pickled VR to container

7. Add UUID and parent UUID to container

The resulting state container can be pickled and saved
to a file or sent over the network. Restoring the VR state
on a VM works in much the same way except the state is
extracted from a container and sent to a VM to be restored.

6

One implementation detail involving Stackless Python is
that tasklets are associated with the thread in which they are
created. It is possible to execute tasklets in multiple Python
threads, but tasklet instances cannot move between threads.
This means that a tasklet must be pickled in the thread in
which it was created. Similarly it is necessary to run an
unpickled tasklet in the thread in which it was unpickled. If
this restriction is removed in a future version of Stackless
Python, it will simplify the River implementation and avoid
some extra object copying.

4.6 Internal State Capture

Supporting the internal state capture interface amounts
to a VR sending a __state__ message to itself. On receipt
of the message, control is returned to the run loop and the
VR state can be saved or, if specified, the state_handler
function can be invoked. The VR tasklet run loop will re-
turn to executing the VR or exit the VR as specified in the
__state__ message. Similarly, the VM can also be exited
if desired, in which case the VR sends an exit request to the
Control VR on the VM.

4.7 Distributed State Capture

The external interface for distributed state capture allows
an external VR to send control messages to running VRs.
The control messages are sent to the Control VR running on
each VM. The Control VR responds to the following state
messages:

• pause Stop the running VR

• resume Continue VR execution

• getvr Retrieve the pickled VR state

• deploy Start a new or saved VR

• balance counts Retrieve message counts

• balance clear Clear message counts

These control messages can be used to implement full
distributed application state capture and full or partial VR
migration. To capture the entire distributed state we can
write a utility VR as outlined in Section 3.2. First, we pause
all VRs associated with the application. Second, we allow
in-transit messages to settle. We ensure that all messages
have reached their destination VRs by querying the mes-
sage counts on each VM through the balance counts con-
trol message. Full or partial migration can be achieved by
pausing all VRs, balancing messages, then moving the de-
sired VRs.

5 Experiments

To demonstrate the usability and overhead of the River
state management mechanism we have performed some
simple experiments. First we look at the overhead involved
in running serial code within River using Stackless Python.
Second, we look at the cost of serial and distributed check-
pointing. All of the experiments were performed on com-
puters with dual dual-core (4 core) AMD Opteron 270 pro-
cessors at 2.0GHz and 4 GB of RAM. We used a Gigabit
Ethernet network for the distributed experiments. The op-
erating system is Linux Fedora Core 5 and we used Python
2.5.1 and Stackless Python 2.5.1. The machines were used
exclusively for these benchmarks.

5.1 Run-time Overhead

To quantify the run-time overhead of executing Python
code within River with state management support we ran
experiments with two programs: the pystone.py (pystone)
benchmark from the standard Python distribution and a par-
allel conjugate gradient solver (congrad) written entirely in
Python. For the Pystone benchmark we ran it for 106 itera-
tions and for the conjugate gradient solver we used an input
matrix of size 256 by 265 doubles with 1 processor.

Version pystone congrad

Python 19.14s 9.56s
River + Python 20.82s 10.25s
Stackless Python 18.69s 10.38s
River + Stackless Python 21.07s 10.73s

Table 1. River Run-time Performance

Table 1 presents the results of the run-time overhead ex-
periments. It is interesting to note that standard Python does
worse than Stackless Python on the pystone benchmark, but
does better on the conjugate gradient solver. Running the
serial code in River + Stackless adds 13% overhead to py-
stone when compared to Stackless alone and 3% overhead
to congrad for the same comparison. The River overhead
comes from two sources: additional threads required by the
River VM that run periodically and the tasklet preemption,
which currently occurs every 1000 bytecode instructions.
These early results suggest the overhead will not be pro-
hibitive.

5.2 Checkpointing Performance

We have evaluated River checkpointing for serial and
distributed operation. For serial checkpointing we ran the
congrad benchmark on a single machine and took check-
points at different frequencies during execution. Using the

7

256 by 256 input matrix the resulting checkpoint file size is
2.7 Mbytes. Table 2 shows the increase in execution time
as we increase the number of checkpoints during a run. For
example, 4 checkpoints resulted in 13% overhead. With a
more practical application, the run times and snapshot sizes
would be much larger. However, the checkpoint frequency
for scientific applications would be much lower. The results
here demonstrate that checkpointing for a small Python ap-
plication using River results in reasonable overhead.

checkpoints 0 1 2 4

congrad 10.73s 11.00s 11.34s 12.14s

Table 2. Serial Checkpoint Overhead

For distributed checkpointing we ran the parallel congrad
benchmark on a larger input matrix (1024 by 1024 doubles)
across 4 machines. We started 4 River VMs on each ma-
chine. On another machine in the cluster, we ran an ex-
ternal asynchronous checkpointing tool similar to the one
presented in Section 3.2. The tool was configured to take
regular distributed checkpoints at different frequencies. The
resulting checkpoint files are 26 Mbytes in size. The check-
point files where collected onto a single machine, thus the
state needed to be transferred in a linear fashion from each
remote VM to a central VM.

checkpoints 0 1 2 4

congrad 202.46s 212.08s 219.94s 236.27s

Table 3. Distributed Checkpoint Overhead

Table 3 show the increasing run time with more frequent
checkpoints. In the worst case with 4 checkpoints the over-
head is 17%. Note that the checkpoint overhead is much
higher than if we checkpointed to the local disk for each
VM.

6 Conclusions and Future Work

This paper presents a general mechanism for state man-
agement of distributed Python programs. Our mechanism
can be used to implement a wide range of policies for fault
tolerance. While similar mechanisms exist for other lan-
guages, this is the first such mechanism for Python pro-
grams. Because we implement checkpointing at the lan-
guage level, there is no need for underlying operating sys-
tem support and the mechanism can be used in hetero-
geneous environments. We have demonstrated that full-
program state capture can be accomplished with reasonable
overhead.

In the future we plan to experiment with River state man-
agement in the context of higher-level programming mod-
els and larger-scale applications. Furthermore we want to
explore supporting native I/O operations and synchronizing
checkpoints with disk state. We believe that the River state
management mechanism can be used to rapidly prototype
and experiment with different dependability strategies.

Acknowledgements

Alex Fedosov developed much of the River core and
many of the River extensions. Brian Hardie and Tony Ngo
worked on the first versions of the River state management
mechanism.

References

[1] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun,
G. Bosilca, and J. Dongarra. Fault tolerant high performance
computing by a coding approach. In PPoPP ’05: Proceed-
ings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 213–223, New
York, NY, USA, 2005. ACM Press.

[2] C. Coti, T. Hérault, P. Lemarinier, L. Pilard, A. Rezmerita,
E. Rodriguez, and F. Cappello. Blocking vs. non-blocking
coordinated checkpointing for large-scale fault tolerant MPI.
In SC, page 127. ACM Press, 2006.

[3] A. S. Fedosov and G. D. Benson. Communication with su-
per flexible messaging. In Proceedings of the International
Conference on Parallel and Distributed Processing Tech-
niques and Applications, Las Vegas, Nevada, USA, June
2007. CSREA Press.

[4] F. C. G. Gartner. Fundamentals of fault-tolerant distributed
computing in asynchronous environments. ACM Computing
Surveys, 31(1):1–26, March 1999.

[5] P. J. Leach, M. Mealling, and R. Salz. A universally unique
IDentifier (UUID) URN namespace. Internet proposed stan-
dard RFC 4122, July 2005.

[6] Numpy. http://numpy.scipy.org.
[7] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:

Transparent checkpointing under Unix. In Usenix Winter
Technical Conference, pages 213–223, January 1995.

[8] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley. Mem-
ory exclusion: Optimizing the performance of checkpoint-
ing systems. Software – Practice & Experience, 29(2):125–
142, 1999.

[9] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpoint-
ing. IEEE Trans. Parallel Distrib. Syst., 9(10):972–986,
1998.

[10] The Python programming language. http://www.python.org.
[11] River. http://www.cs.usfca.edu/river.
[12] The SciPy project site. http://www.scipy.org.
[13] Stackless. http://www.stackless.com.
[14] C. Tismer. Continuations and stackless python. In

Proceedings of the Eighth International Python Con-
ference, 2000. http://www.python.org/workshops/2000-
01/proceedings/papers/tismers/spcpaper.htm.

8

