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Abstract

River is a Python-based framework for rapid prototyping of reliable parallel and distributed run-

time systems. The current quest for new parallel programming models is hampered, in part, by the time and

complexity required to develop dynamic run-time support and network communication. The simplicity of

the River core combined with Python's dynamic typing and concise notation makes it possible to go from a

design idea to a working implementation in a matter of days oreven hours. With the ability to test and throw

away several implementations River allows researchers to explore a large design space. In addition, the River

core and new extensions can be used directly to develop parallel and distributed applications in Python. This

thesis describes the River system and its core interface forprocess creation, naming, discovery, and message

passing. We also discuss various River extensions, such as Remote Access and Invocation (RAI) extension,

the Trickle task-farming programming model, and a River MPIimplementation.
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Chapter 1

Introduction

The River framework [66] is a parallel and distributed programming environment1 written in

Python [62] that targets conventional applications and parallel scripting. The River core interface is based on

a few fundamental concepts that enable the execution of codeon multiple machines and provide a �exible

mechanism for communication among them. Compared to previous parallel and distributed programming

systems, River is unique in its integration with a dynamically-typed scripting language, its simplicity in

implementation and usage, and its ability to be used as a prototyping tool for new parallel programming

models. This thesis describes the River programming model,usage of River to construct applications and

new programming models and the River implementation. In addition, we present both a quantitative and a

qualitative evaluation of River and our River extensions.

The main features of River include a simple programming model, easy program deployment, and

a novel communication mechanism. The goal is to allow a user to leverage multiple machines, i.e., desktops

and laptops, to improve the performance of everyday computing tasks. Parallel application programming

can be done directly with the River API or simpli�ed further by using higher-level constructs provided by

River extensions.

A River application is made up of one or more Virtual Resources (VRs), which are similar to

processes. By naming Virtual Resources with universally unique identi�ers, or UUIDs, River isolates name

references from physical identi�ers (such as an IP address)or socket and �le descriptors. Thus, to com-

municate among themselves Virtual Resources need to refer to each other only by their UUID. No other

identi�cation information (such as an IP address or a hostname) is necessary.

We have created a novel communication mechanism called Super Flexible Messaging (SFM) for

basic communication between processes, both at the system and application levels. The main feature of this

mechanism is the ability to easily send dynamically-typed attribute-value pairs from one Virtual Resource

1River is a parallel and distributed system but for brevity weuse the termparallel in this thesis to mean parallel and distributed.
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to another. All the internal communication within River, such as machine discovery, allocation, and process

deployment is achieved through the use of SFM. Any possible con�icts between system and application

packets are avoided by giving application processes different names (UUIDs) from the system processes.

The �exibility and ease of use of this model combined with powerful and elegant semantics of the Python

programming language made the rapid prototyping of our system extremely ef�cient and allowed us to

explore many different approaches for which we otherwise would not have had time.

Another important goal of River is support of rapid prototyping of new parallel and distributed

programming models. For instance, the �exibility affordedby the River core has allowed us to quickly

implement several small to medium scale extensions to the River framework that provide run-time support

for different programming models. In particular, the �rst extension to River we developed is Remote Access

and Invocation (RAI), which provides transparent access toremote methods and data for River applications.

River makes it easy not only to develop and debug extensions,but also to implement several variations of

an extension. For example, we have used an object-oriented approach to implement MPI [45, 48] on top of

the River core. Our version allows for incorporating an increasing amount of functionality by subclassing

different feature sets. The base implementation can be extended to support derived data types, non-blocking

communication, and optimized collective communication. Additionally, our Trickle [8] extension for task

farming and work distribution has gone through several iterations in which we have experimented with

different semantics.

The implementation of the River run-time system consists ofa River Virtual Machine (VM), which

provides support for communication, discovery, allocation, and deployment; the Virtual Resource (VR) base

class, which serves as the primary River API; and our messaging framework, composed of serialization

routines and a message queue. Underneath the hood the River VM is comprised of several building blocks

that work together to support running VRs. We have a uni�ed network connection model that can utilize

multiple network interfaces and protocols, a connection caching mechanism to support an arbitrary number

of simultaneous connections, a name (UUID) resolution protocol, and low-level data transmission routines.

Our messaging framework automatically handles all the low-level details, such as serializing data, and allows

a programmer to send structured data without any additionalinterface speci�cation.

We present a quantitative evaluation of River using both micro-benchmarks and small-scale appli-

cations. It is possible to write sophisticated parallel Python applications using the River core and the River

extensions, and such applications can be used to evaluate different programming models or to solve real

problems. Of course, such programs will be subject to Python's sequential performance. To improve perfor-

mance, the River core and extensions can be coupled with high-performance C and C++ based libraries such

as NumPy [47] and the Python Imaging Library [52]. Because benchmarks alone do not properly convey the

advantages of River as a framework for building distributedsystems and programming models, we provide
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a qualitative evaluation as well. Trickle, for example, hasbeen used locally to teach parallel programming,

as well as for movie creation and data analysis.

The rest of this thesis is organized as follows. Chapter 2 provides motivation for River and surveys

previous developments in the �eld of distributed programming languages and libraries. Chapter 3 explains

the River Core API and demonstrates how to use it to develop distributed applications. Chapter 4 discusses

our implementation of the River run-time system and its components. The next three chapters serve as

small case studies for using River to develop higher-level functionality and to prototype different parallel

programming models. Chapter 5 presents the Remote Access and Invocation (RAI) framework, an extension

to the River Core. Chapter 6 discusses the Trickle programming model. Chapter 7 presents the design and

implementation of our River-based MPI library. Finally, Chapter 8 presents some concluding remarks and

offers direction for future work.
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Chapter 2

Background

In designing River we leverage past and current developments in the �eld of parallel and dis-

tributed computing. This chapter provides the context for the ideas behind River. First, we provide our

motivation for the creation of the River framework. Then we survey past work in the �eld of distributed

languages and libraries. We also present different communication mechanisms that have been developed for

use in distributed systems. Finally, we discuss Python, thelanguage we chose for the implementation of

River, and the important features it offers for distributedprogramming.

2.1 Motivation

In accordance with Moore's law the number of transistors on aprocessor increases exponentially

by doubling every two years [44, 43]. At the same time, processor technology appears to have reached

a frequency limit. As such, performance improvements are now obtained by packing multiple cores on a

single CPU. Software, however, has not kept pace with hardware advancements and very few applications

have progressed beyond sequential computing to exploit theparallelism present in today's desktops and

laptops. Applications must now maximize usage of all available cores to achieve the best performance.

In the future we can only expect the utilization/idle ratio to get worse as more and more cores

are packed into a single chip. Application programmers realize they have to utilize multiple processors, yet

are reluctant to parallelize their software because parallel programming is dif�cult and brings with it new

issues, problems, and complexities not present in sequential programming. There is no silver bullet yet; the

holy grail of automatically parallelizing an arbitrary sequential program has not been attained. No matter

which language or library is used for the development of a parallel program, a programmer still requires the

knowledge and skills of operating in a parallel environmentwhere many things are happening at once, be it

multiple threads on a single system or multiple processes ona cluster.
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While there exist several languages and libraries for parallel scienti�c computing, they have not

gained traction for general purpose productivity applications due to programming complexity and signi�-

cant administrative requirements. The solution is to �nd the next set of parallel programming models or

incrementally improve current ones, as well as provide a simple and robust underlying framework to al-

low developers to take advantage of inherent parallelism intheir systems (networked desktops and laptops)

without requiring dedicated supercomputers and staff to support them.

Simplifying parallel programming of large scale computations is an area of vital importance to the

future of supercomputing. Conventional clusters, big iron, grids, and now multi-core personal computers

require increased programmer productivity in order to effectively harness multiple processors. In addition

to the general challenge of writing correct parallel programs, newly-trained parallel programmers are forced

to contend with languages (like C and Fortran) that seem primitive compared to those they have been trained

in, such as Java or Python. In order to bridge this gap, new parallel languages need to provide broad-market

features that do not undermine the goals of parallel computing [16]. Thus, much effort in the research

community is focused on improving development languages and distributed run-time systems.

While ultimately using conventional languages for implementing production systems is necessary

for performance, our belief is that using such languages forprototyping can restrict exploration of a larger

set of designs. We speculate that the current practice for parallel language and library design, however,

has typically involved a long development cycle, consisting of a speci�cation by a committee or a group,

a prototype in a conventional language, feedback from and improvement upon the prototype. Going from

a speci�cation to a prototype implementation is a time-consuming and error-prone task if conventional

languages (e.g., C and Java) and conventional communication mechanisms (e.g., sockets and MPI message

passing) are used. This is a key problem and a major roadblockto parallel language development. Our belief

based on empirical experience is that prototyping with conventional languages results in design decisions

locked in at an early stage because making changes to the coreof a run-time system can be a substantial

engineering effort. Furthermore, our belief is based on thefact that using a higher-level language results in

fewer lines of code and therefore less complexity.

However, much can be learned from a working implementation,especially one that can run real

applications on real parallel hardware. It is possible to build prototypes in existing parallel and distributed

languages, but such languages are often designed to supportthe development of applications, not new par-

allel constructs and interfaces. By decreasing the time to prototype and experiment with new ideas via a

working system, more alternatives can be examined and tested. A shorter feedback loop can open up a

much larger design space.

The River framework was developed to allow an application toeasily exploit multiple CPUs and

systems for increased performance and reliability. We intentionally constrained the core of the system
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to have a small and easy to use interface. River's other goal is to facilitate rapid prototyping of parallel

programming systems and constructs. We implemented River entirely in Python [62], chosen for its high

productivity and rapid development characteristics.

In some sense, River is another attempt to bring supercomputing to the masses. Our �rst expe-

rience with popularizing supercomputing was the FlashMob event [24] at the University of San Francisco,

which assembled a massive supercomputer from 700 desktops and laptops. Unlike traditional supercomput-

ers, which are expensive and not accessible to the general public, a FlashMob supercomputer is temporary,

made up of ordinary computers, and is built to work on a speci�c problem. This elaborate experiment proved

that instant supercomputing is viable.

River, however, takes a somewhat different approach. Just like FlashMob, we want to bring dis-

tributed computing to the people, but rather than create massive instant supercomputers, we aim to provide

a usable parallel framework for an average user who has access to a few desktops and laptops. We want to

allow the user to exploit the inherent parallelism present in today's systems. Our goal is to give the user a

programming model and run-time system that enable parallelprogramming with little dif�culty.

River is based on a few fundamental concepts that enable the execution of code on multiple virtual

machines and provide a �exible mechanism for communication. These concepts are supported by the River

run-time system, which manages automatic discovery, connection management, naming, process creation,

and message passing. The simplicity and elegance of the River core combined with Python's dynamic typing

and concise notation make it easy to rapidly develop a variety of parallel run-time systems.

River introduces a novel dynamically typed communication mechanism, calledsuper �exible mes-

sagingthat makes it easy to send arbitrary data as attribute-valuepairs and can selectively receive based on

matching attribute names and subsets of attribute values [23]. This powerful mechanism eliminates the need

to de�ne a �xed packet structure or specify �xed remote interfaces.

The rest of this chapter describes previous and related workthat we leverage in the �eld of dis-

tributed languages and libraries, various communication mechanisms available to parallel programmers, and

parallel and distributed extensions developed speci�cally for the Python language.

2.2 Parallel and Distributed Languages

The design of River is in�uenced by past work on the design of programming languages for

parallel and distributed computing. In [4] Bal,et al provide a comprehensive survey of various research

languages and libraries. Albeit this work was published in 1989, the issues discussed are still pertinent in

the �eld of distributed computing today. A distributed computing system, as de�ned by Bal, consists of

multiple autonomous processors that do not share primary memory, but cooperate by sending messages over
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a communications network.

Message passing as a programming language primitive was introduced by C.A.R. Hoare in a lan-

guage called Communicating Sequential Processes (CSP) [30]. The CSP model consists of a �xed number

of sequential processes that communicate only through synchronous message passing. This resulted in many

subsequent languages supporting some form of message passing, like Occam [41]. These languages were

used for programming distributed systems as well as shared-memory multiprocessors. The next step was

the development of higher-level paradigms and interprocess communication, such as rendezvous, remote

procedure call (RPC), and distributed data structures [4].River continues this tradition by adopting message

passing as the basic communication primitive. Like past systems, River builds more advanced constructs,

such as RPC, on top of message passing.

However, in CSP all interprocess communication is done using synchronous receive and send.

Both simple and structured data may be communicated as long as the value sent is of the same type as

the variable receiving it. The structured data can be given aname. An empty constructor may be used

to synchronize two processes without transferring any realdata, i.e., with an empty message. River (and

our SFM framework speci�cally) extends this model by makingreceives asynchronous and removing all

restrictions on the data types. Any type (both simple and structured) can be named and communicated.

Additionally, both CSP and Occam are static in the sense thatthey do not allow dynamic creation

of new processes during the execution of a program. River allows machines to be discovered dynamically,

thus enabling the addition of new processes during program execution. We have designed a �exiblediscover-

allocate-deploymechanism, described in Chapter 3, to support this idea.

In most procedural languages for distributed programming,parallelism is based on the notion of a

process [4]. For example, the Network Implementation Language (NIL) [71] system consists of a network

of dynamically created processes that communicate only by message passing over communication channels.

In NIL, a process is not only the unit of parallelism but also the unit of modularity. This is similar to the

Virtual Resource, a process-like abstraction found in River. Similar to NIL,each process in River may also

be a different module, providing a unit of modularity.

For situations where message passing is inadequate as the basic communication primitive, other

higher-level mechanisms may be employed. For instance, processors may communicate through some gen-

eralized form of remote procedure call [10]. RPC was �rst introduced by Brinch Hansen for his language

Distributed Processes (DP) [28]. DP processes communicateby calling one another's common procedures.

Another possibility is to use a distributed data structure.One example of this is Linda [15], which supports

an abstract global memory called theTuple Space, rather than using shared variables or message passing for

communication.

Numerous languages support object-based distributed computing such as Emerald [35] and
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Orca [3]. In Emerald, objects are units of programming and distribution and the entities between which

communication takes place. The language is strongly typed and has explicit notions of location and mobil-

ity. Emerald supports concurrency both between objects andwithin an object. Orca [3], on the other hand,

allows processes to share variables of abstract data types (objects). Orca provides an explicit fork primitive

for spawning a new child process and passing parameters to the new process.

River also borrows a lot of concepts from the Synchronizing Resources (SR) language, developed

for programming distributed operating systems and applications [1]. Like SR, River consists of one or more

parametrizedresources, which constitute the main building block of the system. In both cases a resource is

a module run on one physical node. Resources are dynamicallycreated and optionally assigned to run on a

speci�c machine. SR resources interact by means ofoperations, which generalize procedures. Operations

are invoked by means of synchronouscall or asynchronoussendand implemented by procedure-likeprocs

or by in statements. In contrast, River Virtual Resources (VRs) communicate by explicit message passing

usingsendandrecv. The VM and invocation handles concept from our Trickle framework (described in

Chapter 6) are similar in function to VM identities and operation capabilities found in SR.

SR's input statements combine aspects of both Ada'sselectstatement [68] and CSP's guarded

input statement. However, both SR's input statements and River's SFM model are more powerful, since

the expression may reference formal parameters and selection can be based on parameter values. Unlike

SR, which is a standalone distributed language and run-timesystem, River uses a general-purpose language

and targets conventional computer systems. Also, the compile-link-deploy cycle in SR is somewhat heavy-

weight, whereas River's use of Python allows the programmerto immediately run the code without any

intermediate steps. Additionally, SR is not object-oriented, and not as portable as Python or Java.

The JR [38] language extends Java [27] with the concurrency model provided by SR in a manner

that retains the feel of Java. JR is intended as a research andteaching tool. Since JR extends the syntax of

Java, and requires an extra step to translate JR programs into standard Java code. Unlike JR, River is built

in a conventional language and does not introduce any new syntax, which makes it an ideal platform for

developing and prototyping distributed systems and applications.

Several other extensions to Java attempt to modify its concurrency model. For example, Ajents [32]

provides remote object creation, asynchronous RMI, and object migration through a collection of Java

classes without any modi�cation to the language. JavaParty[51] allows transparent remote objects and

instantiation on remote hosts. Communicating Java Threads[29] extends the Java concurrency model by

providing communication between threads based on the CSP [30] paradigm.

The complexities and limitations found in the dominant languages and interfaces for parallel com-

putation – Fortran, C, and MPI – have sparked a quest for the next generation of HPC development environ-

ments [21, 40]. Recent large-scale efforts include X10, Fortress, and Chapel. Such languages are attempting
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to make explicit parallel programming more manageable.

X10 [77, 18, 67] is designed speci�cally for parallel programming. It is an extended subset of

the Java programming language, strongly resembling it in most aspects, but featuring additional support

for arrays and concurrency. X10 uses a partitioned global address space model. It supports both object-

oriented and non-object-oriented programming paradigms.It is still under development but several releases

are available.

Fortress [25] is a draft speci�cation for a programming language for high-performance compu-

tation that provides abstraction and type safety on par withmodern programming language principles and

includes support for implicit parallelism, transactions and static type checking. However, as of the writing

of this thesis, it has not progressed beyond a reference interpreter implementation.

Chapel [17, 13, 16] is designed to serve as a parallel programming model that can be used on

commodity clusters and desktop multicore systems. Chapel supports a multithreaded execution model via

high-level abstractions for data parallelism, task parallelism, concurrency, and nested parallelism. It strives

to vastly improve the programmability of large-scale parallel computers while matching or beating the per-

formance and portability of current programming models like MPI. A prototype compiler is currently avail-

able.

We believe that these next-generation HPC development environments could greatly bene�t from

the River framework, as it could be used for rapid prototyping and testing of new parallel programming

constructs and interfaces. Furthermore, River opens up thedesign space and shortens the development

cycle, allowing programmers to experiment with a wide variety of approaches.

2.3 Communication Libraries and Mechanisms

Interfaces for data communication are crucial to the development and execution of distributed-

memory programs. As such, a multitude of communication mechanisms are available to programmers.

Simple communication actions can be easily expressed through function calls of standard communication

libraries, such as the ubiquitous sockets interface for TCP/IP [70]. It is provided by most operating systems

and is exposed as a higher-level module in most programming languages (e.g., the standard Pythonsocket

module [5] and the Javanet.Socket class [31]). However, problems arise, for example, when a process

wants to selectively receive a message from one of a number ofother processes, where the selection criteria

depends on the state of the receiver and the contents of the message [4].

As the operating system does not know how data structures arerepresented, it is unable to pack a

data structure into a network packet. Higher-level middleware mechanisms such as remote procedure call

and remote method invocation are built on top of a sockets interface. Such mechanisms include Sun RPC,
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Java RMI, CORBA remote objects, SOAP, and XML-RPC [9].

Java provides a message service API [33] that allows point-to-point and publish/subscribe messag-

ing. This support, however, is directed at loosely-coupledenterprise solutions, rather than tightly-coupled

concurrent programs. Message destinations are created andmaintained using administrative tools and, as

such, cannot be considered a language-level mechanism, as they require the programmer to work outside of

the language.

CORBA [19] provides push/pull messaging through event channels. Its greatest strengths are its

language and architecture independence. CORBA is often used for loosely-coupled distributed programs,

however, it requires a separate interface de�nition and corresponding compiler to maintain language inde-

pendence.

In high-performance computing, the Message Passing Interface (MPI) [45, 48] provides a standard

set of mechanisms for point-to-point and collective communication. Finally, as surveyed in [4], several

parallel and distributed programming languages incorporate dedicated syntax and semantics for achieving

communication between remote processes.

All existing mechanisms are useful in appropriate contextsand they all have advantages and dis-

advantages. Our observation is that the low-level mechanisms provide simplicity in concept, but require

detailed handling of data. Likewise, the higher-level mechanisms hide some of the complexities of the un-

derlying low-level mechanism, but introduce new burdens onthe programmer. For example, TCP sockets

require a receiver to handle partial reads, a situation whenless data is available than has been requested.

Also, explicit serialization is required for sending structured data. In contrast, complete objects can be ac-

cessed using a remote object system such as Java RMI [33]. Such systems require some form of interface

de�nition, separate compilation tools, and a con�gured execution environment. Elegant mechanisms exist in

dedicated distributed programming languages, but their usage is limited because their implementations are

typically not widely supported and mainstream developers tend to use more general purpose programming

languages.

A message received during the course of execution of a program may come from an arbitrary

source. Like most imperative programming languages, we usea form of aselectstatement [68] as a construct

for controlling such non-determinism [4]. Our novel communication mechanism, SFM, allows programmers

to selectivelyreceive messages based on not only their source but any otherparameters speci�ed within the

message.

The SFM model provides a simple way to send arbitrary, dynamically typed messages between re-

mote processes. Like traditional low-level mechanisms, SFM allows for the explicit transfer of data between

processes, and like higher-level mechanisms, SFM automatically serializes structured data. SFM handles

all the low-level details and allows a programmer to send structured data without additional interface spec-
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i�cation. In SFM the location in the source code wheresend() is invoked serves as the speci�cation. The

sender and receiver implicitly agree on the type of data transferred. SFM can be viewed as an extension

of function invocation semantics in dynamically typed languages. In such languages, the caller and callee

agree on the types of data passed in and returned by convention. No static type checking is performed. Type

errors are determined at run time.

2.4 The Python Language

The River run-time system, as well as its applications, are written in Python [62], a general-

purpose high-level programming language. Its design philosophy emphasizes code readability. Python's

core syntax and semantics are minimalistic, while the standard library is large and comprehensive. Python

supports multiple programming paradigms (primarily object-oriented, imperative, and functional) and fea-

tures a fully dynamic type system and automatic memory management, similar to Perl, Ruby, Scheme, and

Tcl.

Python has gained in popularity due, in part, to its object-oriented programming model and

system-independent nature. However, its concurrency model is not very �exible, and provided mostly by

third-party packages. Python does support threads, but in practice they do not improve performance as only

one thread at a time may hold Python's global interpreter lock. River's goal is to extend Python's rapid

development capabilities to distributed systems. We aim tofacilitate shorter design/implementation cycles

by opening up the design space and enabling prototypes to runon real hardware. This allows programmers

to quickly demonstrate scalability and feasibility.

Python uses dynamic typing and a combination of reference counting and a cycle-detecting garbage

collector for memory management. Our RAI (Remote Access andInvocation) extension takes advantage of

the garbage collector to deallocate remote objects when their local references go out of scope. An important

feature of Python is dynamic name resolution (late binding), which binds method and variable names during

program execution. For a thorough introduction to Python, we refer the reader to [5]; however, we believe

that there are several language features that merit furtherexplanation: keyword arguments, introspection,

and the Python object model.

The River framework, and speci�cally the SFM mechanism, relies on Python's support for key-

word arguments passed to a function. In general, an argumentlist passed to a function must have any posi-

tional arguments followed by any keyword arguments of the form name=value , where the keywords must

be chosen from the formal parameter names. It is not important whether a formal parameter has a default

value or not. No argument may receive a value more than once and formal parameter names corresponding

to positional arguments cannot be used as keywords in the same calls [63].
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When a �nal formal parameter of the form**kwargs is present, it receives a dictionary contain-

ing all keyword arguments except for those corresponding toa formal positional parameter. This may be

combined with a formal parameter of the form*args which receives a tuple containing the positional argu-

ments beyond the formal parameter list. This makes it possible to capture arbitrary attribute-value pairs by

declaring a function that takes a single argument:**kwargs . Usage of this feature is shown in Figure 2.1.

def foo(*args, **kwargs):
print args, kwargs

a = 1 ; b = 2 ; c = 3

foo(a, b, c)
foo(x = 9, y = 8, z = 7)
foo(a, b, c, x = 9, y = 8, z = 7)

$ python foo.py
(1, 2, 3) {}
() {'y': 8, 'x': 9, 'z': 7}
(1, 2, 3) {'y': 8, 'x': 9, 'z': 7}

Figure 2.1: Using Python Keyword Arguments

Another important feature of the Python language is its Python object model [61]. All data in a

Python program is represented by objects or by relations between objects. (In conformance to Von Neu-

mann's model of a stored program computer, code is also represented by objects.) Every object has an

identity, a type, and a value. An object's identity never changes once it has been created; one may think

of it as the object's address in memory. An object's type determines the operations that the object supports

and also de�nes the possible values for objects of that type.The value of some objects can change. Ob-

jects whose value can change are said to be mutable; objects whose value is unchangeable once they are

created are called immutable. Some objects contain references to other objects; these are called containers.

Examples of containers are tuples, lists and dictionaries.

The two types used extensively in River are mapping types andcallable types. Mapping types

(dictionary is the only current example) represent �nite sets of objects indexed by arbitrary index sets. The

subscript notationa[k] selects the item indexed byk from the mappinga; this can be used in expressions

and as the target of assignments. To support this interface,a class must de�ne two methods:__getitem__

to get an item, and__setitem__ to set an item. Several classes in River de�ne this interfaceand serve as

containers for other objects.

A callable type is a type to which the function call operation(parentheses) can be applied. These
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are user-de�ned functions and methods, as well as class types (used when creating new objects of a class) and

class instances. Class instances are callable only when theclass has a__call__ method;foo(arguments)

is a shorthand forfoo.__call__(arguments) . The Remote Access and Invocation extension, described in

Chapter 5, makes use of this feature to allow function calls on remote objects.

A class has a namespace implemented by a dictionary object. Class attribute references are trans-

lated to lookups in this dictionary. When the attribute nameis not found there, the attribute search continues

in the base classes. A class may de�ne a special method,__getattr__ , which will be called upon each

attribute access,if the speci�ed attribute is not already de�ned as a member of the class or any of its parents.

An exception may be raised to indicate an absence of such attribute. Otherwise, the returned value will be

used as the value of the speci�ed attribute. River, and speci�cally our SFM implementation, described in

Chapter 3, depends on this feature to allow arbitrary attribute names within a message.

A special Python module calledinspect [57] exists to support introspection at runtime. It pro-

vides several useful functions to help get information about live objects such as modules, classes, methods,

functions, etc. For example, it can be used to examine the contents of a class or retrieve the source code of

a method. We use this functionality to import code and data into remote Python interpreters in our Trickle

programming model, described in Chapter 6.

With River we are using Python in a novel way to build parallelrun-time systems. While Python

has proven to be a high-productivity programming language in a wide variety of domains such as web

services, program steering, data analysis, and conventional scripting, due to performance issues it is not

typically used as a systems language. However, Python's concise syntax combined with dynamic typing,

built-in data structures, and a rich standard library enables rapid program development. Also, because it is

an interpretive language, one avoids the edit, compile, runcycle: changes are instantaneous. We leverage

all of these bene�ts to use Python as a form of executable speci�cation for run-time systems. Python's

�exible syntax and introspection features allow developers to strike a balance between language-based and

library-based programming models.

2.5 Distributed Programming in Python

The standard Python distribution comes with several library modules for network communication

and Internet protocols, such as thesocket module [64], or thexmlrpclib module [65]. By themselves,

these modules do not readily allow a programmer to easily design and develop parallel Python programs.

As such, there exist several Python extensions designed to allow programs to cooperate in a distributed

environment.

The IPython [49, 50] project is most similar to River, and speci�cally the Trickle extension de-
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scribed in Chapter 6. It allows interactive coordination ofdistributed Python interpreters. However, its fea-

ture set is rather large and is aimed at coordination and development of high-performance parallel programs.

Unlike IPython, River is a relatively concise extension fordistributed programming. We have deliberately

constrained the River programming model to make it easy to learn and use. See Section 6.5 for a comparison

of Trickle and IPython.

PYRO [20] brings to Python a more traditional form of distributed objects based on a client/server

model, similar to our Remote Access and Invocation (RAI) extension presented in Chapter 5. However,

PYRO does not have direct support for asynchronous invocation and dynamic scheduling. Python support

for the Linda [14] parallel programming model and itsTuple Spacedistributed data structure is provided by

the PyLinda [76] module.

Finally, there exist several projects that provide Python wrappers for the standard MPI inter-

face [45, 48]. These include PyMPI [42], MYMPI [37, 36], and Pypar [46]. Our implementation of MPI,

built on top of River, is described in Chapter 7. Unlike otherPython MPI interfaces, it is written entirely in

Python and does not require additional libraries, such as a Cimplementation of MPI. At the same time, we

believe that River conforms to the C MPI speci�cations more closely than the other Python interfaces. See

Section 7.4 for a comparison of rMPI to existing Python-based MPI interfaces.
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Chapter 3

Programming with River

River is a set of Python classes that provide a core interfaceand an underlying run-time system.

A River program consists of one or morevirtual resources(VRs) that execute on River virtual machines

(VMs); VMs can exist locally or remotely and VRs are named using universally unique identi�ers, or

UUIDs [39]. A VM is simply a Python interpreter running the River run-time system. An initiating VR can

discover existing VMs and deploy itself or other VRs onto selected VMs. Once running, VRs communicate

with each other using a mechanism calledsuper �exible messaging(SFM) for sending and receiving dy-

namically typed messages. This chapter explains these concepts and presents the River programming model

and its API. In addition, several examples are presented to demonstrate how to build River applications. The

implementation of River is described in Chapter 4.
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3.1 Virtual Resources

A virtual resource (VR) is a process-like abstraction for Python programs. A VR runs on a River

Virtual Machine (VM), which provides run-time support for deployment and communication. Each VR has

its own thread of execution, its own message queue, and is named with a UUID (see Figure 3.1). A VR is

speci�ed by subclassingVirtualResource ; therefore, a VR encapsulates state using the standard Python

class type. The UUID serves as a unique VR identi�er, automatically generated at VR creation time. In

practice, a developer never needs to know the UUID value itself; it can be determined and used implicitly.

Having a soft name, such as a UUID, as opposed to an IP address,allows VRs to potentially migrate between

VMs. While not implemented in the version of River describedin this thesis, we discuss migration and fault

tolerance in Section 4.5. The message queue associated witheach VR is used to support oursuper �exible

messagingmechanism, described in Section 3.5, which VRs use to communicate with each other.

!!"#$%&!'#&()*+!,*-.#/%!0',1

!
!!'#&()*+!"%23)&-%!0'"1

4456

7

Figure 3.1: River Virtual Resource

TheVirtualResource base class provides methods for VM discovery, VR creation, and message

passing; Table 3.1 lists all the methods available to River programmers. Additionally, theVirtualResource

class provides several member variables that are of use to the programmer and are assigned by the run-time

system during VR deployment. These are listed in Table 3.2.
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Method Description

send(dest=<UUID> [, <attribute>=<value> ] ...) Send method. (Section 3.5)
recv([<attribute>=<value>, ...]) Generic receive; returns �rst matching message.

Several receive variations exist. (Section 3.5)
discover([<attribute>=<value>, ...]) Discovers VMs running on the local network.

Returns a list of discovered VMs. (Section 3.4)
allocate(<vmlist>) Allocates VMs given in a list for an application.

Returns a list of allocated VMs. (Section 3.4)
deploy(<vmlist>, <module> [, <func> [, <args>]]) Deploys a given module on the VMs in vmlist.

Optionally, the function to start execution
may be speci�ed, along with its arguments.
Returns a list of VMs on which the module was
successfully deployed. (Section 3.4)

setVMattr(<name>, <value>) Sets an attribute with a given name and value
on the VM where the current VR is executing.
(Section 3.2)

Table 3.1:VirtualResource Methods

Name Description

uuid UUID of this VR.
parent UUID of the parent VR, that is, the VR that created this one.

In case this is the launcher, or initiator VR, this value isNone.
args Arguments passed to the VR, either during deployment, or in

the case of the initiator, on the command line.
label Label given to this VM.None by default.
user Username of the VM owner.

Table 3.2:VirtualResource Data Members
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3.2 Virtual Machines

A Virtual Machine is a Python interpreter executing the River run-time system. Multiple VMs can

be started on the same host to take advantage of multiprocessor and multi-core systems. As each VM is a

standalone process executing a separate Python interpreter, modern operating systems will execute them in

parallel on different cores or processors. A VM generally executes only oneapplicationVR at a time: when

that VR �nishes, the VM becomes available for another VR. However, there is no hard limit on the number

of VRs that may execute on a VM at the same time since each VR runs in its own thread.

Each running River VM maintains a set of key-value attributes that provide VM-speci�c infor-

mation, such as the VM's current status (e.g., busy or available), its operating system, hostname, CPU

speed, amount of memory, and River version. Default attributes are presented in Table 3.3. Additionally, a

programmer may set his own attributes using thesetVMattr() method call.

Name Description

status Status of the VM: busy or available.
appVRs Number of non-system VRs currently running on the VM.
mem Amount of memory on the remote system in megabytes.
cpu CPU of the remote system.
cvr UUID of the ControlVR on the remote VM.
host Host name of the remote VM.
label Label given to the remote VM.
pyver Python version of the remote VM.
allVRs Total count of all VRs (system and app) on the remote VM.
version River version of the remote VM.
os Operating systems of the remote VM.
user Username of the VM owner.
caps Capabilities of the remote VM.
arch Platform architecture of the remote VM.

Table 3.3: Default VM Attributes

A special attribute, namedlabel , exists to provide a way to name a VM or a set of VMs. For

instance, a group of VMs running the same application may be labeled with the name of the application;

this provides a logical separation between multiple groupsrunning multiple applications. When all those

VMs are running under the same user, each group may be independently discovered by its label; Section 3.7

explains how this can be done. For ease of assigning a label, it may be speci�ed as a command-line argument

when the VM is started.

Any custom attributes added will also be present in the VM's dictionary of attributes. Note that
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the names of all custom attributes will appear as the value ofcaps(short for capabilities), separated by

whitespace. This makes it possible to �nd out all the custom attribute names at once.

3.3 VR Execution

To execute a River program, one or more VMs must be running locally or remotely on a local

network. The VMs can be running on the nodes of a cluster, similar to MPD [11] found in the MPICH

implementation of MPI. River VMs, launched by runningriver with no arguments, become available for

use by future applications1. A River program is started by runningriver with the name of the application

as an argument. After that, theinitiator, a special instance of a VR, begins the computation. Figure 3.2

shows a possible River setup on a network.

!"#$%&

'() '()

!"#$%*

'()

%%+,-./%01

%
%%0+

%%+,-./%01

%
%%0+

%%+,-./%01

%
%%0+

2.$3"/4

Figure 3.2: River Virtual Machines on a Network

In the case of the initiator, a new River VM is started and immediately begins executing the speci-

�ed Python source �le (River module). On the initiator only,the execution begins in thevr_init() method.

Thevr_init() method is invoked beforemain() in the initiator. This approach, in which a VM is created

for the initiator, supports a wide range of startup strategies and allows for custom startup code that can be

easily tailored for different parallel programming model extensions. Thevr_init() method is responsible

for locating running River VMs on the network, allocating them for an application and deploying itself (or

another module) onto them. Thediscover-allocate-deploysequence is discussed in detail in Section 3.4.

1The exact startup procedure of River VMs is dependent upon the execution environment. For instance, they may be launched
as startup items at login on a desktop, or by special management tools on a cluster.
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Non-initiator VRs begin execution at the method speci�ed during deployment; by convention this method is

calledmain() .

If the vr_init() method succeeds, it must returnTrue . This indicates to the launcher code that

deployment was successful and that the application should proceed. At this point the launcher invokes the

VR's main() method. After themain() method completes, the VR �nishes executing and exits, terminat-

ing the thread. The VM then becomes available for additionalwork. Figure 3.3 illustrates this execution

sequence.
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Figure 3.3: River Program in Execution

3.4 Discovery, Allocation, and Deployment

Starting new VRs on remote VMs is a three step sequence, involving three distinct method calls

in this order:discover() , allocate() , anddeploy() .

First, thediscover() call is used to locate available VMs on the network. In its default form,

invoked without arguments, it will return a list ofVM descriptorsrepresenting all running VMs that are

available for use and are running under the same username as the initiator. We use the username string,

rather than numeric user id's, to differentiate between users, since the same person may have a different user
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id on two separate systems, but is likely to have the same username2. The implementation ofdiscover()

is described in detail in Section 4.4.

A VM descriptor is a dictionary mapping VM attributes to their respective values. The descriptor

contents may be examined to select a subset of VMs, based on their attributes, for execution. In the case

where a user wants to execute an application on all availableVMs that were discovered, the list of descriptors

need not be examined or modi�ed.

The next step is to pass a list of the VM descriptors corresponding to the VMs on which the

application will be executed to theallocate() method. In its simplest form, the call toallocate() takes

the return value fromdiscover() as its only argument. At this point each remote VM ”reserves aspot”

for a new VR, generates a new UUID for it, and returns the UUID back to the allocator to be incorporated

into the VM descriptor. The allocation step allows River to avoid a possible race condition where multiple

initiators are trying to use the same VM for execution. The allocation requests are serviced on a �rst-come-

�rst-serve basis, so if several initiators attempt to allocate the same VM, only the �rst one will succeed

and the rest will fail. Since UUIDs are assigned to participating VRs ahead of deployment, each new VR

can be given a list of its peers. This is useful when many VRs are executing the same code in a SPMD

fashion. Theallocate() method also returns a list of VM descriptors corresponding to the allocated VMs.

If allocation failed on one or more VMs, aRiverError exception is raised. This allows the programmer to

retry discovery and allocation, perhaps requesting fewer VMs.

Finally deploy() is invoked to begin execution of VRs on the allocated VMs. Thedeploy()

function takes four arguments:

� A list of allocated VMs onto which to deploy.

� The River VR module to deploy.

� Optionally, which function in the module should start execution.

� Optionally, the arguments tomain() or the speci�ed start function.

If the start function is not speci�ed, execution will begin at the main() method of the module,

invoked without arguments. In theory, every deployed VR canexecute a different function or even a different

module, however, in practice that rarely makes sense and usually all VRs will execute the same module but

perhaps a different function, depending on the work distribution paradigm used. Thus, programs using

themanager-workerparadigm may choose to have the worker VMs execute one function and the initiator

2In this prototype of River we assume an open network and do notemploy strong authentication or provide encryption. However,
River could be deployed on top of a virtual private network (VPN) to achieve stronger security.
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(manager) VM another. On the other hand, programs followingthe SPMD paradigm of all nodes executing

the same code will elect to call the same function across all participating VRs.

The return value of thedeploy() method is another list of VM descriptors, this time correspond-

ing to the VMs on which the deployment was successful. However, a new attribute,uuid , is added to

each descriptor, which speci�es the UUID of the newly created VR. As such, the list of alluuid attributes

from every descriptor in thedeployedlist represents all peers participating in the running application. A

RiverError exception is raised if deployment failed on one or more VMs.

The initiating VR thus deploys itself or other VRs onto the remote VMs. Thisdiscover-allocate-

deployapproach is �exible enough to handle a wide range of process creation semantics. Furthermore,

these interfaces can be invoked at any time during program execution, thus allowing River programs to

dynamically utilize new machines (VMs) as they become available. Note that it is not necessary to have

River application code reside locally on each machine, as itwill be automatically included with thedeploy

request.

3.5 Super Flexible Messaging

In River we introduce a novel message passing mechanism calledsuper �exible messaging(SFM).

Our mechanism leverages Python's dynamic typing and named arguments for sending structured data as

attribute-value pairs between VRs. SFM allows for an arbitrary number of attributes and the values can be

any Python data type that can be serialized using thepickle module. Here is the syntax for sending and

receiving:

send(dest=<UUID> [, <attribute>=<value> ] ...)
m = recv([<attribute>=<value> [, <attribute>=<value>] .. .])

Note that the attribute names need only be speci�ed at the call sites ofsend() andrecv() . This

mimics normal Python function invocation with named parameters and does not require any additional

speci�cation of the message structure elsewhere in the code. This allows developers to send arbitrary data

without declaring the names and types of message �elds and without explicit serialization. Therecv()

mechanism allows for selective message retrieval by specifying speci�c required attributes and messages to

received. The �elds of a received message are accessed usingmember dot notation:m.attribute or via a

standard dictionary lookup:m['attribute'] . The latter construct is useful when dynamically generating

attribute names, e.g., in a loop. The list of attribute namesmay also be obtained by calling them.keys()

method.
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Sent messages are delivered to the message queue of the destination VR. Therecv() implemen-

tation uses the speci�ed attribute-value pairs to select messages from the queue (see Chapter 4 for more

details on the implementation). Thesend() function is non-blocking andrecv() is blocking3. We also

provide a non-blocking receive (recv_nb() ) and apeek() predicate for querying the message queue. A

single message queue per virtual resource is used to simplify the interface and to more easily support state

management. Higher-level message passing mechanisms suchas mailboxes can be built using the basic

SFM primitives.

As previously stated, each VR has a receive queue and a UUID. The SFMsend() operation

must explicitly specify a UUID as the destination. On the receiving side SFM uses the destination UUID

to associate a message with the destination VR and deposit iton the correct receive queue. Therecv()

operation retrieves qualifying messages from the receive queue.

An SFM message is a set of attribute-value pairs. An attribute name is always a string, whereas

a value can be of any type, such as integer, string, list, object, etc. Two special attributes are reserved and

have special meaning:src anddest . Thedest attribute is required when sending and speci�es the UUID

of the destination VR. Thesrc attribute is added automatically by the run-time system andcontains the

UUID of the originating VR. If the programmer leaves outdest or attempts to providesrc in a send()

operation, aRiverError exception is raised. Thus, sending a message can be as simpleas passing all the

desired attributes and their values as named parameters to thesend() function. The syntax forsend() is:

send(dest=<VR> [, <attribute>=<value> ] ...)

Typically, at least one attribute-value pair is provided inaddition to thedest=<VR> pair. However,

it is possible to send an empty message for synchronization purposes. Consider the following example,

where the destination UUID is stored in a variableB:

send(dest=B, tag='input', data=[1,2,3,4,5])

Note that the attribute names are completely arbitrary. Also, data can come from the surrounding

scope:

rec = { name : 'Dave', id : 24 }
send(dest=newdest, protocol='db', idrec=rec)

3Our current implementation depends on the sockets library for buffering sends.
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As mentioned previously, attribute values can be any Pythontype that can be pickled. This in-

cludes most Python types, e.g., most immutable types, lists, dictionaries, and user-de�ned objects.

The SFMrecv() function is similar to thesend() function in that it takes a variable number

of attribute-value pairs as arguments. However, the attribute-value pairs constrain which messages should

be received. Each received message is guaranteed to have at least the attribute-value pairs speci�ed in the

recv() call. The return value is an SFM message object whose attributes can be accessed using the member

variable dot notation. The defaultrecv() function is blocking; thus, if no messages match the speci�ed

criteria, the caller is blocked until a matching message arrives. The syntax ofrecv() is:

message = recv([, <attribute>=<value> ] ...)

In its simplest form, receiving without any arguments will return the �rst message in the queue in

�rst-in, �rst-out order:

msg = recv()

A more common scenario is to receive a message from a particular source (note that thesrc

attribute will appear in all messages, even though it is not explicitly speci�ed by the sender):

m = recv(src=A)

Matching can be done on any number of attributes but the following conditions have to be satis�ed:

all attributes must appear in the message and their values must be equal to the values speci�ed in therecv()

call. Note that this does not mean the message must only have the speci�ed attributes, just that the speci�ed

attributes must be present in the message. Here we ask for messages that came from VRA and have the

protocol attribute set to the string valueinput :

m = recv(src=A, protocol='input')

Another possibility is to receive messages from any source as long as theprotocol attribute is

equal todb:

m = recv(protocol='db')
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Since the attribute names are completely arbitrary, matching can be done on any attribute. If a

message does not have one or more attributes speci�ed inrecv() , then the message will not be accepted (it

will remain in the queue to be matched later). As shown in Figure 3.4, accessing the attribute values of a

message is identical to accessing member variables of Python objects.

# VR A
mylist = range(10)
send(dest=B, mytag=42, input=mylist)

# VR B
m = recv(mytag=42)
print m
print m.src
print m.input
print m.mytag

# Output
Message: {'dest': 'B', 'src': 'A', 'mytag': 42, \

'input': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}
A
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
42

Figure 3.4: Simple SFM Example

Figure 3.5 shows how different invocations ofrecv() can match different messages in the queue,

and how the same message may be matched by specifying different arguments torecv() . The �rst matching

message will be returned. Note that we just show sample invocations and the messages they will match in

the queue, not a sequence of steps.

Additionally, an attribute passed torecv() may be paired with a lambda expression or a named

function rather than a value. This can be done to restrict attribute values to an arbitrary subset, (e.g.,

id = (lambda x : x > 100) ). In this case, no direct comparison is done but instead thatfunction is

invoked with the attribute value (from the message) as the only argument if the attribute exists in the mes-

sage. If the function returnsTrue , the attribute is considered to match. If all other attributes match, the

message is returned. This allows the user to perform more sophisticated matching such as simulating a

logical OR expression, or arbitrary string matching. For example, the following code will match a message

if it contains atag attribute equal to one of the two speci�ed values:
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Figure 3.5: SFM Matching

m = recv(tag=lambda x: x == 23 or x == 42)

Finally, to receive a message that contains a certain attribute, regardless of its value, theANY

constant (self.ANY within VR code) can be speci�ed to achieve a wildcard effect4. For instance, the

following code will match any message as long as it has atag attribute, no matter what its value is:

m = recv(tag=self.ANY)

As mentioned above, several variants of therecv() function exist. All of them take a variable

number of attribute-value pairs as arguments but vary in their blocking effect and return value. Table 3.4

summarizes them.

The difference between the defaultrecv() andrecv_nb() functions is thatrecv() blocks when

4self.ANY is equivalent tolambda x: True .

26



Name Description

recv Blocking receive (most commonly used).
recv nb Non-blocking receive. Raises an exception

if no matches are found.
peek Non-blocking peek. ReturnsTrue or False

based on match result.
regcb Registers a callback function to be invoked

when a message matches the speci�ed attributes.
unregcb Unregisters a callback function.

Table 3.4: Various Receive Functions

no message matching the speci�ed attributes has been found,whereasrecv_nb() raises aQueueError

exception instead of blocking. Thepeek() function works in exactly the same way but returnsTrue or

False , indicating whether a match has been found without removingthe message from the queue. It is

useful to avoid blocking; for instance, when we expect a number of messages from our peers with a given

attribute, but we do not know exactly how many messages therewill be. In this case, we can invokepeek()

in a loop and as long as it returnsTrue , there will be a matching message on the queue, so we can then call

recv() without blocking:

while peek(tag='result'):
p = recv(tag='result')

Finally, an alternate method of receiving a message is registering a user-de�ned callback function

with the queue. Only one callback function may be registered. The function will be invoked asynchronously

when a matching message arrives. The syntax is the same as forthe other SFM functions except that a

callback keyword argument must be provided, giving the reference to the callback function that should be

invoked. The callback function must take a single argument:the matching message.

def mycbfunc(p):
# process message

regcb(src=A, tag='result', callback=mycbfunc)

The callback function needs to be registered only once but itwill continue to be called for ev-

ery matching message until unregistered. Theunregcb() arguments must match theregcb() arguments

exactly.
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unregcb(src=A, tag='result', callback=mycbfunc)

3.6 A Complete River Program

Building on the concepts explained in previous sections, Figure 3.6 presents a simple but complete

River example. This program attempts to discover all running VMs on the network and deploy itself onto

them. All VRs then send a message to the initiator with their hostname, and the initiator prints them out.

1 from socket import gethostname
2 from river.core.vr import VirtualResource
3
4 class Hello (VirtualResource):
5 def vr_init(self):
6 discovered = self.discover()
7 allocated = self.allocate(discovered)
8 deployed = self.deploy(allocated, module=self.__modul e__)
9 self.vrlist = [vm['uuid'] for vm in deployed]

10 return True
11
12 def main(self):
13 if self.parent is None:
14 for vr in self.vrlist:
15 msg = self.recv(src=vr)
16 print '%s says hello' % msg.myname
17 else:
18 self.send(dest=self.parent, myname=gethostname())

Figure 3.6: First River Program

The Hello class is declared as a subclass ofVirtualResource on line 4. Note that the same

module is executed on all peers. Recall that thevr_init() function is invoked only on the initiator. Next,

all available VMs running under the same username (the default behavior) are discovered on line 6. All the

discovered VMs are allocated on line 7 and the module is then deployed to each of them on line 8. A list

of all peers is then saved on line 9. Oncevr_init() returns, control passes to themain() function on the

initiator. All the deployed VRs start executingmain() as well, since no other function was speci�ed in the

deploy() call.

Recall thatself.parent contains the UUID of the initiator in all the deployed VRs, but is equal

to None in the initiator itself. In this way we can distinguish the initiator from the rest of its peers at run
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time. In this example, every child VR sends a message to the initiator on line 18, specifying its hostname

as the only message attribute,myname. The initiator has a list of all its child VRs, and waits to receive a

message from each on line 15. The hostname of the child VR is then printed on line 16. Note the usage of

the dot notation to access the message attribute and the attribute name is identical to what the originating

VR speci�es in thesend() call.

3.7 Selective Discovery

So far we have shown only trivial usage of the discover, allocate, deploy sequence: all available

VMs are discovered and used to execute the example in Figure 3.6. When invoked without any arguments,

discover() will return a list of available VMs belonging to the user. However, it is possible to further

restrict or expand the list of discovered VMs. This can be done by passing arguments todiscover() in the

form of attribute-value pairs, much like in the case of SFM. However, in this case the speci�ed arguments

will be matched against the attributes of the remote VMs.

A wildcard self.ANY can be speci�ed as the attribute value in thediscover() call to indicate

that any value of that attribute in the remote VM is acceptable, as long as that value is present. This allows

testing for thepresenceof an attribute, ignoring its value.

For instance, Figure 3.7 shows howall running VMs, regardless of their status, be it available or

busy, can be discovered. Note that although every VM can be discovered, not every VM may be allocated

or used for deployment. The same default rules apply to allocation and deployment as to discovery: a VM

must be available and must belong to the same user as the one attempting to allocate it for an application.

from river.core.vr import VirtualResource

class Foo(VirtualResource):
def main(self):

discovered = self.discover(status=self.ANY)
print 'Discovered %d VMs:' % len(discovered)
for vm in discovered:

print '%s %s' % (vm['host'], vm['status'])

Figure 3.7: Broader Discovery

Furthermore, just like with SFM, it is possible to specify alambda expression or a named func-

tion as an attribute value. In this case, the function will beinvoked bydiscover() during the matching

phase with the actual value as the argument. If the function returnsTrue , the match is successful, and the
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corresponding VM is included in the returned list. Figure 3.8 shows adiscover() call that looks for VMs

running on Intel architecture. Note that we present only therelevant method call, as the rest of the code is

identical to Figure 3.7.

discovered = self.discover(arch = lambda x: x in ['i386', 'x 86_64'])

Figure 3.8: Selective Discovery with Functions

3.8 Examples

This section presents some sample River programs:MCPi, a program that calculates the value of

p using the Monte-Carlo method;WFreq, a word frequency counter, and parallel dot product and matrix

multiplications functions from a conjugate gradient solver.

3.8.1 Monte Carlo Pi

Figure 3.9 shows an implementation for calculating Pi usingthe Monte Carlo method and a

manager-worker paradigm. As always,vr_init() method executes �rst on the initiator to set up the exe-

cution environment, where available VMs are discovered anddeployed on lines 6-7. A list of participating

VMs is gathered on line 8. Next, by default, control passes tomain() on the initiator, and toworker() , the

function speci�ed during deployment, on the worker VMs.

The remainder of the program is driven by the manager, contained in themain() function. The

number of iterations is passed by the user on the command lineand is available asself.args variable. The

manager then computes and sends out the number of iterationsper worker on line 17. On lines 20-21 the

manager collects the results from all workers and computes the �nal result.

A worker receives the number of iterations on line 29, performs the work and sends back the

result on line 38. The UUID of the manager is available to the worker as theself.parent variable, which

contains the UUID of the initiator.

A more detailed version of this example is presented in Appendix A.1.

30



1 import random
2 from river.core.vr import VirtualResource
3
4 class MCpi (VirtualResource):
5 def vr_init(self):
6 VMs = self.allocate(self.discover())
7 VMs = self.deploy(VMs=VMs, module=self.__module__, fun c='worker')
8 self.workers = [vm['uuid'] for vm in VMs]
9

10 return True
11
12 def main(self):
13 n = int(self.args[1])
14 numworkers = len(self.workers)
15
16 for uuid in self.workers:
17 self.send(dest=uuid, tag='n', n=n/numworkers)
18
19 in_circle = 0
20 while numworkers > 0:
21 p = self.recv(tag='result')
22 in_circle += p.result
23 numworkers -= 1
24
25 pi = 4.0 * in_circle / n
26 print 'Our approximation of Pi = %f' % pi
27
28 def worker(self):
29 p = self.recv(src=self.parent, tag='n')
30
31 in_circle = 0
32 for i in range(0, p.n):
33 x = 2.0 * random.random() - 1.0
34 y = 2.0 * random.random() - 1.0
35 length_sqr = x * x + y * y
36 if length_sqr <= 1.0: in_circle += 1
37
38 self.send(dest=self.parent, result=in_circle, tag=' result')

Figure 3.9: Monte Carlo Pi
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3.8.2 Distributed Word Frequency Count

Figure 3.10 shows a distributed word count program that computes word frequencies across multi-

ple �les. We again use a manager-worker paradigm to distribute the work, and assume that there are enough

�les to create equal-sized chunks of work for each worker VR.The general structure of the program is the

same as the previous example, so we omit most of the skeleton code like thevr_init() function. Complete

source code appears in Appendix A.2.

Each worker receives a list of �les to process, loops throughthem, opens each �le, tokenizes it,

and counts the number of times each word occurs. The results are saved in a dictionary, which is sent back to

the manager. The manager begins by splitting all input �les (passed on the command line) into work slices,

one for each worker. The work (a list of �le names) is then sentto the worker, and the manager then waits

for the results. As the results come in, the manager combinesthe dictionary from each worker into one �nal

result.

1 def manager(self):
2 for w in self.workers:
3 self.send(dest=w, tag='files', files=fnames[w])
4
5 m = {}
6 for w in self.workers:
7 p = self.recv(tag='result')
8 rm = p.result
9 for i in rm:

10 m[i] = m.get(i, 0) + rm[i]
11
12 def worker(self):
13 p = self.recv(src=self.parent, tag='files')
14
15 m = {}
16 for f in p.files:
17 wordcount(f, m)
18
19 self.send(dest=self.parent, tag='result', result=m)

Figure 3.10: Word Count
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3.8.3 Parallel Dot Product and Matrix Multiplication

Figure 3.11 illustrates a simple way of implementing parallel dot-product computation and parallel

matrix multiplication. This excerpt is taken from the Riverversion of a parallel conjugate gradient (CG)

solver. Due to space considerations, the entire program code is not shown, but appears in Appendix A.3.

First, thepdot() function is listed, which includes a naive implementation of the MPIAllreduce()

operation. The local dot product is calculated on line 2, then all worker VRs send their local result to the

parent VR on line 5. The parent collects the local results from all the workers on line 11 and sums them up,

then sends the global sum back to each worker on line 15. Finally, all the worker VRs receive and return the

global result on line 6.

Next, in thepmatmul() function we emulate the MPIAllgather() operation. All processes

except the parent VR send their local part of vectorx to the parent on line 21 and then block inrecv() until

the parent sends back the entire globalx on line 22. Meanwhile, the parent receives everyone's part on line

28 and creates the global version of the vector, which is thenpropagated to all nodes on line 32. Finally, all

nodes perform the multiplication of the entire vectorx and their piece of the matrixA and return the result

on line 34.
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1 def pdot(self, x, y):
2 result = dot(x, y)
3
4 if self.uuid != self.parent:
5 self.send(dest=self.parent, result=result, tag='pdot ')
6 m = self.recv(src=self.parent, tag='allreduce')
7 return m.result
8
9 else:

10 for w in self.workers:
11 m = self.recv(tag='pdot')
12 result += m.result
13
14 for w in self.workers:
15 self.send(dest=w, result=result, tag='allreduce')
16
17 return result
18
19 def pmatmul(self, A, x):
20 if self.uuid != self.parent:
21 self.send(dest=self.parent, x=x, tag='pmatmul')
22 p = self.recv(src=self.parent, tag='allgather')
23 globalx = p.globalx
24
25 else:
26 globalx = x[:]
27 for w in self.peers:
28 p = self.recv(src=w, tag='pmatmul')
29 globalx += p.x
30
31 for w in self.peers:
32 self.send(dest=w, globalx=globalx, tag='allgather')
33
34 return matmul(A, globalx)

Figure 3.11: Parallel Dot-Product and Matrix Multiplication
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3.9 Extensions

The River interface combined with Python's syntax and data types can also be used to implement

alternate parallel programming models. The bene�t of developing a programming model in River is that

development time is spent on the interesting parts of the dynamic run-time support, rather than on mundane

low-level details that would be required in languages such as C, C++, and Java. We also �nd Python's

syntax signi�cantly rich to explore different parallel constructs; to demonstrate this we have developed

several alternate programming models. Chapters 5, 6, and 7 describe the extensions included with the River

run-time system. This section discusses how a programmer can develop an extension to River and illustrates

this with an example, a remote dictionary extension. The amount of time it took to develop this extension

serves as a testament to productivity afforded by the combination of River and Python — it took less than

two hours to design and implement a working model.

We start by examining a possible sample program built upon this extension. Figure 3.12 presents

a variation of our word frequency counter from Section 3.8 that is based on the remote dictionary extension.

Note that only thewordcount function remains unchanged, but everything else is different. Most impor-

tantly, there is no reference to any of the River Core API methods, or even theVirtualResource base class.

Instead we derive our class from theRemoteDictionary extension class. The interface provided by this

extension class is the two dictionary methods (__getitem__ and__setitem__ ), which allow usage of the

bracket operators on theself object. Thus we passself to wordcount as the dictionary in which to store

results.

from remdict import RemoteDictionary

class WFreq (RemoteDictionary):
def main(self):

for f in self.args:
self.wordcount(f, self)

def wordcount(self, filename, m):
f = open(filename)
for l in f:

for t in l.split():
m[t] = m[t] + 1

f.close()

Figure 3.12: Word Frequency Example with the Remote Dictionary Extension

A partial implementation of theRemoteDictionary extension class is shown in Figure 3.13;
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see Appendix A.4 for the complete source code. The most important methods here are__getitem__ and

__setitem__ to get and set items in the dictionary, respectively. On a get, we send a request to look up the

speci�ed key remotely, wait for a reply, and return the result to the caller. On a set, we simply send the key

and value pair to the remote machine.

The same class performs the functions of the server hosting the dictionary. In fact, the actual

dictionary will reside on the initiator, which will serviceget and set requests from other machines. After

following the usualdiscover-allocate-deployprocedure invr_init() , the initiator enters a loop, accepting

and servicing dictionary requests. Once all the workers have exited, the �nal contents of the dictionary are

printed out.

This is a trivial example that provides an interface in whichmultiple clients communicate with a

single server. Access to the global dictionary results in communication with the initiator, where the actual

dictionary is stored with no redundancy or fault tolerance.The performance is also very poor because

each dictionary access results in network communication with no caching. However, this simple example

illustrates how to build a River extension.

We include more sophisticated examples of River extensionsin the following chapters. Chapter 5

presents our Remote Access and Invocation extension. Chapter 6 discusses Trickle, an explicit but simple

distributed programming model. Chapter 7 presents a River version of the MPI programming library.
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class RemoteDictionary (VirtualResource):
def __getitem__(self, key):

self.send(dest=self.parent, action='get', key=key)
p = self.recv(src=self.parent, key=key)
return p.value

def __setitem__(self, key, value):
self.send(dest=self.parent, action='set', key=key, val ue=value)

def vr_init(self):
self.m = {} ; deployed = [] ; end = 0

VMs = self.allocate(self.discover())
files = self.args[1:]
slice = len(files) / len(VMs) ; extras = len(files) % len(VMs )

for worker in VMs:
beg = end ; end = beg+slice
if extras: end += 1 ; extras -= 1

deployed += self.deploy(VMs=[worker], module=self.__mo dule__,
func='rdmain', args=files[beg:end])

self.peers = [vm['uuid'] for vm in deployed]
self.startfunc = self.serve

return True

def rdmain(self):
self.main()
self.send(dest=self.parent, action='done')

def serve(self):
done = 0
while done < len(self.peers):

p = self.recv()
if p.action == 'get':

v = self.m.get(p.key, 0)
self.send(dest=p.src, key=p.key, value=v)

elif p.action == 'set':
self.m[p.key] = p.value

elif p.action == 'done':
done += 1

Figure 3.13: Remote Dictionary Extension
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Chapter 4

Design and Implementation

The River framework consists of run-time support code within the River Virtual Machine (VM)

andVirtualResource base class. Internally the River VM is comprised of several components that work

together to provide the VR execution environment. These include the uni�ed network connection model,

name resolution support, a connection caching mechanism, low-level data transmission routines, and our

communication framework calledsuper �exible messaging(SFM). This chapter describes the design and

implementation of the River run-time system. The River Coresource code is included in Appendix B.

4.1 Super Flexible Messaging

The SFM implementation consists of two main modules: thepacket module (shown in Ap-

pendix B.4), which provides the basic encoding and decodingfunctionality, and thequeue module (shown

in Appendix B.5), which provides packet matching at the receiving side. We call an SFM message asuper

�exible packet(SFP). This section details encoding, decoding, and queue matching.

The SFM implementation does not include any low-level network communication routines. In-

stead, such communication is provided by the underlying environment, in this case, the River VM, as de-

scribed in Section 4.2. SFM only deals with representing thedata, rather than its transmission. In principle,

SFM could be used on top of any network transport.

4.1.1 Encoding

Encoding consists of serializing the speci�ed attribute-value pairs and preparing the serialized

packet to be sent over the network (e.g., via a socket connection). An SFP is created by passing a list of

named parameters to theencode() function, which �rst encodes them into a binary format. Since named

parameters in Python appear as a dictionary, we accomplish this by serializing (orpickling, as it is called
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in Python [59]) the dictionary and adding a small header. TheSFP header consists of two �elds: a magic

signature string, used for sanity checking, and the length of the serialized payload. As described in Chap-

ter 3, an attribute is a string and its value can be of any serializable type. At least one attribute, the UUID

of the destination VR, is required. Additionally, another attribute, the UUID of the source VR, is added to

the dictionary automatically. ARiverError exception is raised if no destination is speci�ed or if the user

provides his own source. Figure 4.1 illustrates the encoding sequence.
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Figure 4.1: SFM Encoding Process

Serialization of data exacts a performance penalty becausethe data must be transformed and

copied. Additionally, we incur an extra copy when we combinethe payload with the SFM header. We show

in Section 4.6.1 that the overall performance of River applications would greatly bene�t from optimizing

the encoding function. Appendix B.4 presents the source code to our encoding function.

4.1.2 Decoding

Thedecode() function operates as follows. First, the header is decoded and parsed to determine

whether a packet has been received in its entirety and to ensure that it is a valid SFP. If the packet is

incomplete, it is not processed until more data is availableto complete the remaining part. Otherwise, the

payload is deserialized into a Python dictionary and then used to construct a packet object that represents the

SFP. ThePacket class overrides the internal__getattr__() method, allowing users to access the packet's

data by referencing attribute names using member �eld dot notation. This lets the user refer to the attributes

contained within the packet using the same names as originally speci�ed by the sender. Furthermore, the

Packet class implements the standard dictionary methods such askeys() , values() , anditems() .

Two items are returned: an unserialized packet object (orNone if there was not enough data to
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complete a packet), and any leftover data, which could be an empty buffer, or the entire input buffer. Since

thedecode() function does not preserve any state, the leftover data should be saved by the caller and then

prepended to the next sequence of bytes obtained from the network before the next round of decoding is

attempted. If thedecode() function determines that the input buffer does not contain avalid serialized SFP,

an SFMError exception is raised. This should never be the case when a reliable low-level communication

protocol, such as TCP, is employed. Appendix B.4 presents the source code to our decoding function.

4.1.3 Queue Matching

The message queue consists of an ordered list of received SFPs (in a �rst-in, �rst-out order) and

a condition variable, which is used to block a VR when no packet can be returned. In its basic form the

receive function (the queue get method), like the send function, takes a variable number of attribute-value

pairs (again, as Python named parameters) but uses them as keys to match against packets in the queue. That

is, for a packet to match, all attribute-value pairs passed to the receive function must appear in the packet

and have the exact same value. To perform matching we linearly walk the queue of packets and check the

speci�ed attributes against every packet. If an attribute was speci�ed to the receive function but does not

appear in a packet or its value in a packet is different than the one speci�ed, matching fails and we proceed

to the next packet. Only the �rst matching packet is returned. If there are several matching packets, multiple

invocations of the receive function are necessary to retrieve them.

The basic receive function is blocking and if no packets are present in the queue or none of them

match, the calling process is put to sleep on a condition variable. Once a new packet is added to the

queue, the VM will signal on the condition variable, waking up the sleeping process and allowing it to retry

matching.

If the value of an attribute is a lambda expression or a function rather than a simple data type, no

direct comparison is done but instead that function is invoked with the attribute value (from the packet) as

the only argument. If the function returnsTrue , the attribute is considered to match. If all other attributes

match, the packet is returned. This allows the programmer toperform matching based on a set of values and

simulate other logical constructs.

Additionally, we provide other variants of receive, such asa non-blocking receive that raises a

QueueError exception if no packets were matched and apeek() function that returns a boolean value

indicating whether a matching packet can be retrieved from the queue (see Section 3.5). The matching

semantics are exactly the same as the basic receive: any number of attribute-value pairs used for matching

are passed in as input parameters. The only difference is that the VR is not blocked on a condition variable

if no matching packets are found. The source code for our queue implementation is shown in Appendix B.5.
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4.2 River VM

In the common case, there are three threads of execution inside the River VM: the network receive

thread, which is responsible for receiving and decoding incoming messages; the Control VR thread, which

responds to discovery and deployment requests; and the application VR thread, which executes application

code and provides VR support functions. These include methods to send data, register a VR, set VM

attributes, obtain statistics, and shut down the VM. Figure4.2 shows a general view of River VMs.
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Figure 4.2: River Virtual Machines

We use a local socket for synchronization between network receive thread and application VR

thread. That socket is monitored by theselect() system call in the network receive thread and is employed

for two purposes: to signal the network thread to shut down, and to indicate to it that a new connection has

been established by the VR thread and the appropriate socketshould be added to theselect() read set.

We make the distinction betweensystemandapplicationVRs to differentiate between VRs that

are part of the run-time system and VRs created by the user andrunning a River application, respectively.

Unlike application VRs, there are no restrictions on the number of system VRs that can be created in a VM.

The maximum number of application VRs is con�gurable, but incommon usage the maximum is set to one.

The most important task of the VM is the transmission of messages between VRs: sending on

the source VR and receiving on the destination VM. The implementation of the River VM appears in Ap-

pendix B.2.
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4.2.1 Sending Data

The send() function takes an arbitrary number of attribute-value pairs comprising a message,

encodes them, and sends the resulting binary data to the destination VR. It executes in the context of a

running VR and consists of the following steps:

1. Resolve the destination UUID into an (IP, port) tuple.

2. Retrieve a connection to the VM listening on that (IP, port) tuple.

3. SFM is used to encode the speci�ed attribute-value pairs into a binary representation.

4. The resulting buffer is transmitted over the network.

Each of these steps is described in detail in the following sections. Figure 4.3 illustrates what

happens when VR A sends a message to VR B. (1) The VM on which VR Ais running needs to �nd the IP

address and port number of the VM on which VR B is running, so itbroadcasts an ARP request. (2) VR B's

VM sends a reply with its information. (3) VR A's VM establishes a connection to VR B's VM. (4) This

establishes a communication channel between VRs, and �nally, the message is encoded and sent.

A special case of sending is when a message is transmitted to another VR on the same VM. In this

case, a copy of the speci�ed attribute-value pairs is made, which is then used to construct aPacket object.

This SFP object is then directly added to the queue of the destination VR.

An mcast() function is provided to multicast a message to all VMs. Its semantics are identical to

thesend() function except that specifying a destination is no longer required and has no effect. Currently,

the mcast() function is only used internally for discovery and address resolution and is not exposed to

application VRs. Since there is no destination speci�ed in amulticast message, the message will be placed

in the queue of the Control VR on the receiving side.

4.2.2 Receiving Data

The sequence of receiving data can be broken down into the following steps:

1. Receive data from the network (e.g., a socket).

2. Decode the data into SFPs.

3. Add SFPs to the queue of the appropriate VR.

4. Perform matching to return an SFP back to the caller.
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Figure 4.3: Sending Data

Unlike sending, there is no explicit low-level receive function available to read data from a socket

and return SFP objects in one fell swoop. Again, this is because the SFM model has no provisions for

low-level data transfer details but instead focuses on structured representation. Since data reception is an

asynchronous event and may happen at any time, we have a separate network input thread responsible for

centrally receiving all data from socket connections. The data is then decoded into SFPs and placed into

the message queue of the appropriate VR, as speci�ed by thedest attribute within the packet. Thus, the

recv() function available to application programmers does not invoke any receive-related code within the

VM but operates by retrieving matching packets from the queue. In the sequence given above all except the

last steps are performed by the network receive thread.

The network receive thread runs an in�nite loop that receives and processes network data. We use

the select() system call to monitor multiple network connections simultaneously. The network receive

code is tightly integrated with the connection pool (see Section 4.3) which maintains a set of open connec-

tions. The network thread detects incoming connections andadds them to the pool. Likewise, any dropped

connections are removed from the pool. If there is pending data waiting on a connection, it is received and

decoded into one or more SFPs. If an error occurs during decoding (that is, if theSFMError exception is
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caught), the data is discarded. It is not possible to recoverfrom this condition but we have not seen it in

practice.

Once the network thread has an SFP object from the socket, we determine the destination VR to

which the packet was sent by using the includeddest attribute. The packet is then added to the message

queue of that VR, and the network thread performs a notify on acondition variable attached to the message

queue being modi�ed, in case a VR was blocked on arecv() invocation. Figure 4.4 illustrates data reception

in River. The network receive thread also processes the registered callback functions, if any. The relevant

source code is presented in Appendix B.2.

!!"#$%&!'(

!
!!'"! )

*

!
!!'"!+

*

,%-./!
+

,%-./!
)

,%-./!
+

-%0%1.23

4%.56&7
.8&%9,

Figure 4.4: Receiving Data

Retrieval of the message by the application VR consists of the SFM queue matching operation

that executes within the VR thread and is described in Section 4.1.

4.3 Connection Model and Caching

We have designed a uni�ed connection model for low-level communication between River VMs

(and in turn VRs). Currently we only support sockets but our model can be extended to support other APIs

and interconnects, such as Ini�niband Verbs API [75] and Myrinet GM [26]. Our model provides a generic
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net connection object that represents a connection over which data can be sent and received. This connection

object providessend() andrecv() methods that allow for low-level data transmission and reception. In the

case of sockets these directly map to the socket'ssend() andrecv() methods, respectively. The connection

class provides a uniform interface to both TCP and UDP connections, allowing the VM to treat unicast

and multicast connections identically. The source code forour implementation of this model is shown in

Appendix B.6.

We allow multiple VMs to run on the same host by using a different TCP port number for every

VM. Thus each VM will be associated with a unique tuple containing its IP address and port number. Since

all VR communication can be reduced to communication between VMs, we multiplex several logical con-

nections (between VRs) over a single physical bi-directional (socket) connection between VMs. Thus, two

distinct VRs communicating with another pair of VRs on a different VM will be using the same communi-

cation channel, as shown in Figure 4.5. Here VR A and VR B are executing one application, while VR X

and VR Y are running another.
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Figure 4.5: Multiplexing Connections

When a new connection object is created, the__init__() method of the connection class per-

forms the low-level socket calls necessary to establish a connection between the two hosts. TCP sockets are

used for low-level unicast communication between VMs (and in turn VRs), while UDP multicast sockets

are used for broadcasting messages to all VMs.

A connection object maintains a receive buffer that stores any unprocessed (leftover) data and

automatically prepends it to the new (incoming) data beforeattempting to decode the buffer into SFPs.

Decoding is attempted at everyrecv() call after data has been read from the underlying socket. If no SFP

is obtained, an empty list is returned to the caller, or a listof one or more valid SFPs upon success.

To support an arbitrarily large number ofsimultaneousconnections we have implemented a caching
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connection pool. The purpose is two-fold: to allow more connections than the underlying OS would nor-

mally support and to avoid setting up a connection between every pair of VRs participating in a computation.

The connection pool is integrated with the network connection object interface in such a way that the VM

never needs to create connections directly but instead simply requests the necessary connection from the

pool. If the pool does not currently have such a connection, anew connection object is implicitly created

and returned. The pool object is a dictionary-like data structure that provides easy access using the standard

Python dictionary lookup syntax with the[] (bracket) operator where the speci�ed key is a tuple containing

the IP address and port number of the VM to which a connection is requested. When the pool reaches its

maximum size, connections are expunged on a least recently used (LRU) basis. If the expunged connection

is later requested again, it will be re-established and a newconnection object for it will be created. By

default the cache holds 1024 connections.

Figure 4.6 shows that although every pair of VRs has a logicalconnection between them, a phys-

ical connection is only established when there is actual data being transmitted. The source code for our

implementation of the connection pool concept is presentedin Appendix B.7.
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Figure 4.6: Connection Model
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4.3.1 Name Resolution

From the programmer's perspective River VRs are identi�ed only by UUIDs. This is done to

facilitate VR migration by allowing a VR to move between VMs without disrupting any inter-VR communi-

cation. Since a VR keeps its UUID when moving to another VM, communication carries on unaffected. To

translate a UUID into a VM address (IP address and port number) we use a mechanism similar to ARP [53]

for name resolution.

The VM maintains a cache that matches UUIDs to an (IP, port) tuple. If no entry is found for

the requested UUID, the VM broadcasts a UUID resolution request over UDP multicast, which is a special

system message to locate the VM on which the VR named by that UUID currently executes. When the

target VM receives the request and con�rms that it owns the speci�ed VR, it sends out a broadcast reply

(also over UDP multicast to avoid in�nite name resolution loops) that contains its IP address and port number

tuple. The source VM receives the reply message and adds a newentry to the UUID-to-IP cache. When an

existing entry is detected to have expired (after 60 secondsby default), it is expunged from the cache and

the resolution process is repeated as needed.

Since the request message is sent out within the VR thread, whereas the reply packet is received

within the network thread, the former blocks for a minimal amount of time to wait for a reply. If no reply

is received, the operation is retried four more times, afterwhich thesend() operation is aborted and a

RiverError exception is raised if a UUID does not resolve. See Appendix B.2 for the relevant source code.

4.4 Discovery, Allocation, and Deployment

A special system VR, called the Control VR, is created on every VM during initialization and

exists until the VM terminates. Its purpose is to receive andrespond to system requests, such as those for

discovery, allocation, and deployment. What differentiates the Control VR from other VRs is that the River

VM is made aware of it as the VR to whose queue the system messages will be delivered (see Figure 4.7).

Our implementation of Control VR is shown in Appendix B.3.

However, other than this special property, in its structureand behavior the Control VR is identical

to any other VR. It is responsible for responding to discovery, allocation, and deployment requests as well as

creation of new VRs and cleanup of terminated ones. Additionally, the Control VR maintains a map of VM

attributes, such as River version, Python version, CPU speed, amount of memory, and others. (See Table 3.3

for a complete list.) Recall from Chapter 3 that before distributed execution can begin, the initiator needs to

follow the discover, allocate, deploy procedure. See Appendix B.1 for the source code of our implementation

of this procedure.

Discovery is a procedure by which an initiator locates otherVMs on the network that are available
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Figure 4.7: Control VR

for execution of River applications. Discovery is typically done at application startup, but it can also be used

at any point during application execution to dynamically discover additional VMs. We elected to implement

discovery using UDP multicast, rather than relying on a centralized registry, to keep River usage as simple

as possible. We also did not want to introduce the added burden on the user to run another daemon that

maintains the centralized registry.

To discover available VMs on the network, the initiating VR sends out adiscoverrequest, which is

an SFP that is multicast to all running VMs. Since it is a system message and does not contain a destination

UUID, this SFP is added to the message queue of the Control VR on the receiving side. The Control VR

will retrieve and process it.

The initiator can choose to discover all VMs or further constrain discovery based on attribute

matching. For instance, the default behavior is to discoverVMs whose status attribute indicates that the VM

is available for use. Alternatively, one may want to only discover VMs with more than, say, one gigabyte

of RAM. Discovery attribute matching adheres to the SFM conventions described in Chapter 3, so multiple

attributes may be speci�ed. The Control VR on the target VM performs matching and, if successful, replies

to the initiator indicating that it is available. If matching is unsuccessful, the discover request is ignored.

Once the initiator obtains a list of VMs matching its search criteria, it needs to allocate them for

execution. This is done by issuing anallocaterequest to the discovered VMs. Again, this is received by the

Control VR on the target VM. By default the allocation request must come from the same user as the one
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who owns the target River VM, otherwise the request is ignored. The Control VR generates a new UUID

for the VR about to be instantiated and replies to the initiator indicating a success.

Finally, after the initiator receives all the allocation replies, it issues adeploy request which con-

tains the module source code, name of the module, function inwhich to begin execution, and any arguments

that are passed to the designated function. The target Control VR veri�es the allocation, imports the module,

and instantiates a new VR. Since the VR runs in its own thread,it begins execution as soon as the Control

VR calls itsstart() method.

The VR module can be imported in several ways. If the module source code was supplied with the

deploy request, which is the default behavior, a module is created dynamically. Otherwise, if the initiator

exported a local directory (see Section 5.2), the Control VRattempts to retrieve the source code by reading

the speci�ed �le from the exported directory. Finally, if all else fails, the module is imported from the local

�le system. If no import is successful, deployment fails, and an error is propagated back to the initiator.

>>> class A: pass
>>> class B(A): pass
>>> class C(B): pass
>>> import inspect
>>> inspect.getmro(A)
(<class '__main__.A'>)
>>> inspect.getmro(B)
(<class '__main__.B'>, <class '__main__.A'>)
>>> inspect.getmro(C)
(<class '__main__.C'>, <class '__main__.B'>, <class '__m ain__.A'>)
>>> rv = [A, B, C]
>>> rv
[<class '__main__.A'>, <class '__main__.B'>, <class '__m ain__.C'>]
>>> rv.sort(key=lambda x: len(inspect.getmro(x)), rever se=True)
>>> rv
[<class '__main__.C'>, <class '__main__.B'>, <class '__m ain__.A'>]

Figure 4.8: Obtaining Base Class List

It is possible that a module contains more than one subclass of VirtualResource , and one of

them may be a derivation of another. Thus, we need to select the correct class for instantiation, which will

be the most specialized one. To properly make this determination we use the Pythoninspect module [57]

to obtain the base classes of each candidate inmethod resolution order. For example, consider three classes:

A, B, and C, where B is derived from A, and C is derived from B. Figure 4.8 shows usage of thegetmro()

function from theinspect module to obtain the list of base classes of each A, B, and C in the order of the
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depth of their class hierarchy. We also show how to sort a listof A, B, and C appropriately so that the most

specialized class is the �rst element.

To determine the correct VR class to instantiate from a Rivermodule, we iterate through the

speci�ed module's dictionary and check each attribute. If the attribute is a subclass ofVirtualResource ,

it is added to a list of potential candidates for instantiation. We then sort this list by the depth of each

candidate's class hierarchy, given by the length of thegetmro() function's return value. The list is then

returned to the Control VR, which instantiates the most specialized class, given by the �rst element of the

list. Note that if two classes have equal depth of the class hierarchy, thesort() function will place only one

of them at the head of the list, and that class will be instantiated. In case of multiple inheritance, we rely

on thegetmro() function to provide the correct class hierarchy. In practice this ambiguity should not arise

because each VR class is contained in its own �le. Figure 4.9 shows the relevant source code.

def getVRclasses(module):
rv = []
for name in dir(module):

ref = getattr(module, name)
try:

if ref != VirtualResource and issubclass(ref, VirtualReso urce):
rv.append(ref)

except TypeError:
pass

rv.sort(key=lambda x: len(inspect.getmro(x)), reverse= True)
return rv

Figure 4.9: Determining the Class to Instantiate

4.5 Fault Tolerance

River was originally conceived with fault tolerance in mind. The Core API and underlying pro-

gramming model supports execution transparency through soft names via UUIDs and decoupled message

queues. This allows VRs to seamlessly migrate between VMs with only a brief pause in execution. The

version of the River run-time system described in this thesis does not support checkpointing or migration,

however, there exists a branch of the code where this work hasbeen implemented. It utilizes a special ver-

sion of Python, called Stackless Python [73, 69], to capturethe arbitrary run-time state of VRs. Stackless

Python removes the use of the C run-time stack from program execution in the Python interpreter. This

feature combined with the notion oftasklets, allows dynamic program state to be pickled just as any other
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Python object instance. This version of River is described in [6].

4.6 Experimental Results

We wrote several micro-benchmarks and applications to measure the performance of River. Our

experimental platform consisted of a varying number of identical nodes of a cluster. Each node was equipped

with dual Opteron 270 dual-core processors, 4 gigabytes of RAM, and Gigabit NIC, and all were connected

to an isolated Gigabit network. For all the experiments we used Python 2.4.3 and executed tests with the -O

option (optimization turned on). All the results shown represent an average over three runs.

4.6.1 SFM

To determine the cost of the SFM mechanism we constructed a simple ping-pong benchmark.

Using this benchmark we compare performance of different types of mechanisms that could be used to send

data between two Python processes running on two different hosts. Note that only the last version of this

particular benchmark is a River application; all others arestandalone Python programs.

128 bytes 16 kb 64 kb

mechanism lat bw lat bw lat bw
sockets 48 20 220 568 642 778
pickle 73 16 275 453 964 518
SFM 84 14 285 439 1005 497
SFM w/Q 97 13 305 410 1031 485
River 222 9 455 276 1080 463

Table 4.1: Ping-Pong Latency (lat,µs) and Bandwidth (bw, Mbps)

Table 4.1 shows the latency and bandwidth1 of �ve different implementations of a ping-pong

benchmark that transmits a character array of a given size back and forth between two processes. The �rst

version,sockets , simply sends the array from sender to receiver and back using the Python interface to the

socket library; no encoding of the data is done. Thepickle version is an example of how a programmer

could use thepickle module in Python to transfer structured data to a remote machine. It demonstrates

the cost of pickling a Python object and sending it over the network. Because we do not know the size

of pickled data a priori, we prepend a small header that contains this information to the data. This incurs

a performance penalty due to an additional copy before sending. TheSFM version usesencode() and

decode() functions with the named argument notation provided by the SFM model to serialize the data. The

1We de�ne latency as the total time elapsed for the message, and Mbps as 220 bits per second.
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SFM w/Qimplementation adds trivial use of the queue mechanism provided by the SFM model by putting

the received packet on the queue and then retrieving it. Because this involves operations on a condition

variable within the queue, it results in an additional performance cost. Finally, theRiver version is a full

River application that transmits data back and forth between two VRs. Figures 4.10 and 4.11 show graphical

representations of our bandwidth and latency results, respectively.
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Figure 4.10: Ping-Pong Latency

Both SFMversions introduce overhead that results in lower bandwidth and higher latencies but

signi�cantly simplify the code that a programmer would normally have to write to send structured data

across the network. As discussed in Chapter 3, the SFM model also allows powerful packet matching based

on attributes and their values. These results represent theworst-case scenario since a typical distributed

program would consist of both communication and computation. Additionally, our queue implementation

has not been optimized yet. Finally, theRiver version adds yet more overhead in the form of additional

threads. Recall from Section 4.2 that a typical River application involves three threads: the VR thread,

the network receive thread, and the Control VR thread. Data is received by the network receive thread but

processed by the VR thread. Synchronization between these threads in the form of a condition variable

(see Section 4.2) results in additional performance penalty, approximately 30%, compared toSFMversions.

Using 128 bytes and 16 kb for the buffer size is not suf�cient to achieve optimal performance; we get better

results with a 64 kb buffer. These �ndings indicate that any context switches due to a separate network

thread and additional Python processing in the critical path of network communication results in signi�cant

overhead. For instance, both encoding and decoding functions incur overhead due to copying of buffer data.
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Figure 4.11: Ping-Pong Bandwidth

Also, Python libraries do not provide any scatter/gather I/O operations, which would be bene�cial in this

case.

4.6.2 River Core

To measure network performance of the River Core, we wrote a River version of thettcp [74]

benchmark and compared its results against the standard C version. Additionally, we used an implementa-

tion of the Conjugate Gradient (CG) solver to obtain application performance measurements. This section

presents our experimental results of these two applications.

4.6.2.1 TTCP

We tested River network performance using the standardttcp [74] benchmark. The C version

comes with most Linux distributions and is freely availableon the Internet. Additionally, we wrote a River

version of the benchmark and a straight Python version. Table 4.2 presents our bandwidth measurements

obtained by running each version with various buffer sizes and Figure 4.12 graphs the results. Note that

unlike the ping-pong benchmark, which measures the round-trip time of a message,ttcp only measures

how fast data can be sent out — there is no acknowledgement from the receiver.

It is worthwhile to note that if we use a buffer size of 64 kb, River is able to achieve the same

bandwidth as straight Python and even C versions. With smaller buffer size, River performance suffers,

again, due to synchronization between multiple threads andextra processing overhead in the critical path of
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version 128 bytes 16 kb 64 kb

C (original) 643 896 896
Python 394 896 896
River 21 654 896

Table 4.2: TTCP Bandwidth (Mbps)
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network communication. With smaller buffer sizes, the costof processing and synchronization dominates

the cost of data transmission.

4.6.2.2 Conjugate Gradient Solver

We also used the conjugate gradient (CG) solver, shown in Appendix A.3, to benchmark River

application performance. The CG solver is a �ne-grain parallel program and involves substantial communi-

cation between consecutive computation steps. We have useda 2048� 2048 matrix of �oats for input. Our

experimental platform was a small cluster of 8 nodes, each with dual Opteron 270 processors and 4 GB of

RAM. To obtain the results for 32 VMs we ran four River VMs on each of the eight nodes, and for 16 VMs,

two on each of the eight nodes.

The results, given in Table 4.3, show that River can be used toparallelize and speed up straight

Python code. Obtaining the best possible performance for anapplication is not one of our goals, and,

needless to say, one would not normally use Python for this purpose. However, we demonstrate that existing

Python code can take advantage of River and obtain signi�cant speedup.

Additionally, we wrote a version of the CG solver that uses the Numeric Python library to calcu-

late the most computation-intensive steps: matrix multiplication and dot product. While this dramatically

speeds up the overall computation, the communication is still done in Python and thus does not scale well.

Performance quickly deteriorates as more VMs are added because communication, done in Python, begins

to dominate computation, done in C. Also, this version of CG solver uses our own inef�cient collective

operations which further inhibit performance. The C MPI version, included for comparison, was compiled

with -O2 (optimizations turned on), and used the LAM MPI implementation. All the results are shown in

Table 4.3 and graphed in Figure 4.13.

VMs 1 2 4 8 16 32

River time 6375 3389 1704 917 505 443
River speedup 1.00 1.88 3.74 6.95 12.62 14.39

Numeric time 99.60 61.10 53.60 48.19 67.75 120.80
Numeric speedup 1.00 1.63 1.85 2.07 1.47 0.68

C/MPI time 81.95 42.04 24.63 25.32 16.22 11.41
C/MPI speedup 1.00 1.95 3.32 3.23 5.05 7.18

Table 4.3: Conjugate Gradients Solver Results (seconds)
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Chapter 5

Remote Access and Invocation

The River Core interface described in Chapter 3 can be used tonot only develop parallel and dis-

tributed Python programs but also to implement alternate parallel programming models. We �nd Python's

syntax rich enough so that we can explore different parallelconstructs; to demonstrate this we have de-

veloped several extensions to River. In this chapter we present the Remote Access and Invocation (RAI)

extension to the River Core, which is a generalized RPC/RMI mechanism. In addition to supporting remote

procedure call and remote objects, the RAI mechanism also supports remote access to global data. The

RAI mechanism is built using the River Core API. We have used the RAI mechanism to support local di-

rectory export, a simple form of network �le sharing described in Section 5.2, as well as the Trickle task

farming extension, described in detail in Chapter 6. Trickle is built directly on top of the RAI mechanism,

demonstrating that extensions are stackable and support reuse.

5.1 Programming Model

RAI is a uni�ed interface to establish remote interfaces to the functions and classes from a des-

ignated Python module. RAI provides remote data access, remote procedure call, remote object creation,

and remote method invocation. The implementation containstwo components: a server and a client. The

RAI server takes a Python module and serves its contents to the clients. The module can contain arbitrary

Python code (classes, functions, data, etc.), rather than aspeci�c River application. The classes and func-

tions provided inside the module will be available for remote instantiation and invocation by the clients.

Furthermore, functions and classes may be injected from theclients into the server where they can execute.

Figure 5.1 illustrates the RAI concept and capabilities. For example, RAI allows us to (1) invoke a method

de�ned in a remote object, (2) inject locally-de�ned code into the remote Python interpreter, and (3) use the

injected code.
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Figure 5.1: Remote Access and Invocation

To execute an RAI server on a machine, it is simply started with the standard River launcher,

giving the name of the module,rai.py , on the command line as the River program to run. The RAI clients

are written as standard River applications and are launchedthe same way.

Figure 5.2 gives an example of a complete RAI module that can be served. It consists of two

functions that we want to make available for remote invocation. When the RAI server starts up, it will

automatically set two custom VM attributes:RAI module , the value of which will be the �le name of the

Python module being served, andRAI server , the value of which is the UUID of the VR running the RAI

server.

def add(*args):
return reduce(lambda a,b: a+b, args)

def mult(*args):
return reduce(lambda a,b: a*b, args)

Figure 5.2: Sample RAI Server Module

To access an RAI server's data and methods remotely it is necessary to obtain a handle to the RAI

server, represented by theRemoteVR object (a special proxy object for remote access). To instantiate such

an object, the client �rst needs to obtain the server's UUID,which appears as a value of theRAI server

attribute and thus can be obtained using the standard River discovery mechanism. Once aRemoteVR object is

instantiated, the data and methods exported by the referenced RAI server can be accessed using the member

dot notation.
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Figure 5.3 presents the client-side code and shows how to invoke a remote procedure. Note that

we only need to perform discovery to �nd an RAI server; allocation or deployment steps are not needed in

this case. Also, we do not use thevr init() method here, but instead perform discovery withinmain() .

We discover our speci�c RAI server by matching on the module name being served (line 7). We then obtain

that RAI server's UUID from the VM descriptor on line 12 and create aRemoteVR object to represent it

on line 13. When creating aRemoteVR instance, it is necessary to pass it a reference toself , that is, a

VirtualResource object, to allow remote objects access to the VR'ssend() and recv() methods for

communication. Finally, we invoke methods through this remote object on lines 16 and 17.

1 from river.core.vr import VirtualResource
2 from river.extensions.remote import RemoteVR
3
4 class RAITester (VirtualResource):
5 def main(self):
6 try:
7 vm = self.discover(RAI_module='samplerai')[0]
8 except IndexError:
9 print 'RAI server not found'

10 return -1
11
12 server = vm['RAI_server']
13 r = RemoteVR(server, self)
14
15 args = range(1,10)
16 print ' remote call add', args, r.add(*args)
17 print ' remote call mult', args, r.mult(*args)

Figure 5.3: Sample RAI Client

By default the RAI server executes inrestrictedmode, which allows the clients to execute the code

and access the data that were speci�cally provided in the server module, but not anything else. However,

it is also possible to execute the RAI server inunrestrictedmode, which gives clients access to the entire

remote Python interpreter and all of its contents. As such, the clients can remotely direct the server-side

interpreter to import any standard library module or call any built-in function, which would not be allowed

in the default restricted mode.

Unrestricted mode can be invoked by passing a--unrestricted command-line argument to the

RAI server. Note that no server code is necessary in this case, as all we need on the remote side is a Python

interpreter and standard library modules.

Another feature of unrestricted mode is the ability toinject code and data into the remote Python
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interpreter. The injected function can then be invoked in a standard way1. Figure 5.4 shows an example of

how to access a remote RAI server running in unrestricted mode and how remote and local invocations and

arguments to these invocations can be mixed seamlessly.

1 from river.core.vr import VirtualResource
2 from river.extensions.remote import RemoteVR
3 import operator
4
6 def factorial(x):
7 if x == 1: return 1
8 return x * factorial(x-1)
9

10 class RPCTester (VirtualResource):
11 def main(self):
12 try:
13 vm = self.discover(RAI_module='<unrestricted>')[0]
14 except IndexError:
15 print 'RAI server not found'
16 return -1
17
18 server = vm['RAI_server']
19 r = RemoteVR(server, self)
20
21 r.inject(factorial)
22 print ' remote sum of local range', r.sum(range(10))
23 print ' local sum of remote range', sum(r.range(5))
24 print ' remote factorial', r.factorial(r.sum(r.range( 5)))

Figure 5.4: RAI Client for an Unrestricted Server

In unrestricted mode the module name in theRAI VM attribute is set to<unrestricted> . We

match on this attribute when performing discovery on line 13. As before, we obtain a reference to the

remote VR on line 19. At this point we can access any built-in Python methods and variables by using the

dot notation on this remote VR object. On line 21 we inject thelocal factorial() function into the remote

interpreter.

Beginning on line 22 we show two examples of mixing remote andlocal invocations. First, we

invoke the built-insum() method remotely and pass it alocal argument: a list locally generated by the built-

in range() function. Next, on line 23 we invoke thesum() function locally, passing a return value from a

remote invocation ofrange() as an argument.

1In this prototype of RAI we assume an open network and do not employ strong authentication or provide encryption. However,
River and RAI could be deployed on top of a virtual private network (VPN) to achieve stronger security.
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Finally, on line 24 we perform several nested remote method calls. First, we remotely call the

range() function, which returns a list. We then pass this list to the remotesum() function, which calculates

and returns the sum of all elements. Finally, this value is given as an argument to the injectedfactorial()

function that is also invoked remotely.

5.1.1 Passing Remote Object References

With RAI it is possible to pass a reference to aRemoteObject to the RAI server or even another

VR. For instance, consider the following code that opens a �le on the remote side:

r = RemoteVR(server, self)
f = r.open('/etc/fstab')

print f.read()

In this case a remote reference to a �le object is returned by the open() function and thus the

invocation ofread() is also remote.

However, if an injected function needs to make use of remote objects, it has no way of accessing

them directly, as they do not share the same namespace. (The actual objects on the remote side are kept

in the RAI server's namespace to which injected code does nothave access.) The solution is to pass a

RemoteObject reference from the initiator:

r = RemoteVR(server, self)
f = r.open('/etc/fstab')

def myread(f):
return f.read()

r.inject(myread)
print r.myread(f)

Note the distinction: in the previous exampleread() is invokedremotelyby the local code, while

in this case it is invokedlocally by the injected function. The reference to a remote �le object gets translated

into a local reference on the server.

Additionally, we can send aRemoteObject reference to another client VR:

self.send(dest=self.peer, file=f)
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The destination VR can access the receivedRemoteObject in the standard RAI way:

p = self.recv(src=self.parent)
f = p.file
print f.read()

5.2 Local Directory Export

Local Directory Export (LDE) is a simple RAI module that provides an export of a local directory,

allowing remote VRs to access its �les. It is very useful in cases where all machines running a River

application do not share the same network �lesystem but needto access common data. In such cases, the

data may be placed on the initiator machine, which exports the data directory using LDE by specifying

--export-dir option to the River launcher. The River launcher automatically starts the RAI server running

the LDE module before starting the main program.

The LDE module provides two functions:listdir() , which is a wrapper for the function of

the same name in theos module, andopen() , which is a wrapper for the Python built-in function. This

enables LDE clients to list the contents of the directory being exported and access remote �les for reading

and writing.

As before, the VR on the client side needs only to get aRemoteVR reference using the standard

discover calls, as shown in Figure 5.3, and then proceeds to access the �les it needs through that refer-

ence. Figure 5.5 demonstrates access to remote �les that areexported with LDE. Thediscover() calls are

omitted.

r = RemoteVR(server, self)

files = r.listdir()
f = r.open(files[0])
data = f.read()

Figure 5.5: Using Local Directory Export

5.3 Design and Implementation

The server in execution simply waits for incoming requests from the client, which could be any of

the following:
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� inject Inject the speci�ed source into the server.

� call Invoke the speci�ed function with given arguments on the server.

� getattr Access a remote object attribute using dot notation.

� deleteDecrement reference count to a remote object.

A call request invokes the speci�ed function or method. If an object is created by the invocation,

it will be returned by reference. This allows for remote object creation. Agetattr request looks in the

VM namespace for an attribute reference. It allows for remote updates and access to global variables and

objects. If an exception is raised, it will be propagated back to the sender. Thedeleterequest is used to

indicate that a remote proxy object is no longer accessible.These are usually generated implicitly by the

Python interpreter when a local reference is deleted on the client side and allows for objects to be reclaimed

by the remote server's garbage collector. The source code tothe RAI server is presented in Appendix C.2.

On the client end a special object of typeRemoteObject is used as a proxy for both the remote

VM handles and remote objects. The proxy object overrides many of the default object access methods,

including __getattr__() , __setitem__() , __getitem__() , and others. If an attribute does not exist in

the local proxy object, it is assumed to be an attribute on theremote object and a request to access it is sent

to the server. In this way, RAI can transparently propagate local attribute access and invocations to remote

VRs.

All replies to attribute lookups are processed according totheir type: scalars are returned directly,

objects are saved in a lookup table on the server side and an object id is returned, and any exceptions are

propagated back and raised on the client side. We save the object references in a dedicated environment to

protect them from the garbage collector, as no other reference to the object will exist on the server otherwise.

Functions are treated in the same manner as objects, except that they are not stored in a lookup table on the

server.

The RAI client support code creates an instance of theRemoteObject class when a reference to

an object is returned. The instance contains the object name, its id on the server, and UUID of the remote

VR. Functions are returned as callable remote object instances. When invoked as a function, the remote

object sends a message to the server, specifying the function name to call, its arguments, and awaits a reply

with the return value. Return values from functions are processed in exactly the same way as replies to

attribute lookups. Section 5.4 discusses in depth our various implementation attempts of remote functions.

See Appendix C.1 for the RAI client source code.

Recall that to send a message from one VR to another, all attributes of the message need to be

serialized. To allow for serialization, and thus for transmission,RemoteObject proxy implements special
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Python methods__getstate__() and__setstate__() . The former method is invoked at serialization and

is responsible for removing any references to aVirtualResource object that encapsulates it. Normally, a

RemoteObject has a reference to its parent VR and the VR'ssend() andrecv() methods, which it uses

for communication. Before serialization, all these references are removed from the object and it is marked

asorphan. In fact, the only data kept are the object name, object id, and the server UUID, on which the

object resides.

After a remote object is transferred and the �rst time thisorphanobject is used for an attribute

lookup2, RAI code will detect that it is not attached to a parent VR andwill locate the parent automatically.

This is done with Python introspection using theinspect [57] module. First, we obtain the current stack

frame withinspect . Then, we check the module name of the code in the current stack frame, which is given

in the frame's global variable space. As long as the stack frame refers to the code from the RAI module, we

travel back up the call stack and obtain the previous stack frame. Finally, the �rst stack frame outside the

RAI code will belong to aVirtualResource object, and a localself reference will point to the VR itself.

We then create aRemoteVR instance with this reference andbind it to theorphanobject, which associates

the VR's communication methods with the remote object. Figure 5.6 gives the relevant implementation.

def __getattr__(self, name):
if self.orphan:

frame = inspect.currentframe()
while frame.f_globals['__name__'] == 'river.extensions .remote':

frame = frame.f_back

parent = frame.f_locals['self']

r = RemoteVR(self.server, parent)
self.bind(r)

Figure 5.6: Locating a Parent for Orphan Remote Objects

Since the actual objects exist on the RAI server, it does not need to follow the same procedure,

but instead walks the speci�ed argument list and converts any RemoteObject references to its local object

references, looked up by object id.

Code injection from the initiator to remote VMs is also achieved with Python introspection. It is

possible to obtain the source code for any function or class given a reference using theinspect module.

Theinject() function uses the speci�ed reference to �nd the source code.The source is packaged up and

sent to the remote VM. The RAI server accepts theinject request and uses the Pythonexec statement to

2In Python every invocation and variable access is preceded by an attribute lookup.
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introduce the source into the running VM.

The RAI request invocation handler on the client side divides each request into two parts: sending

and receiving. By default the two halves are invoked in sequence. However, such division makes it possible

to support asynchronous invocation with thefork() method. Figure 5.7 illustrates this idea.
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Figure 5.7: Asynchronous Invocation in RAI

Whenfork() is invoked to indicate an asynchronous method invocation, the RAI client sends a

remote request to the server and then returnsimmediatelywithout waiting for a reply. A special kind of

a remote object is returned: aForkHandle instance. This proxy object keeps track of outstanding remote

invocations, and later, theForkHandle instance can be used to join with an outstanding request. Note that

the RAI server invokes the method synchronously as soon as the request is received, and sends a reply when

the method completes. Since each VR has its own receive queue, the reply from the server can arrive at

any time and it will be queued on the requesting VR. The clientcan then invoke thejoin method of the

ForkHandle instance, which will wait for a reply and return the result, blocking if necessary. Our Trickle

programming model, described in Chapter 6, makes extensiveuse of this feature. However, all invocations

in the base RAI API are synchronous. That is, at every invocation a send is immediately followed by a

blocking receive.

5.4 Discussion

Our implementation of remote function calls merits furtherdiscussion. In Python a function invo-

cation is preceded by an attribute lookup with the function name as a key. This is translated into a remote

request, and the server sends a reply indicating that the given attribute is a function. However, our represen-
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tation of that function reference on the client side went through several iterations.

Our �rst initial implementation simply saved the last attribute name looked up. If the result of the

lookup was a function, we returned a reference to a specialstub() method that handled all remote function

invocations. Our assumption was that if an attribute lookupis followed by a function call, it is the function

just looked up being invoked.

However, this assumption proved �awed in the case of nested function invocations (line 22 of

Figure 5.4). In such cases the Python interpreter performsall lookups �rst, and only then invokes the

functions. Thus, in our scheme therange() function is looked up last, and so all three invocations willbe

treated as invocations ofrange() .

Our next approach was to still keep ourstub() method but employ a partial function application

using a closure to keep track of function names. Figure 5.8 shows our implementation of this technique.

def curry(func, fname, *args0, **kwargs0):
def callit(*args, **kwargs):

kwargs.update(kwargs0)
return func(fname, *(args0+args), **kwargs)

return callit

Figure 5.8: Partial Function Application in RAI

When a remote attribute lookup results in a reference to a remote function, we return a reference

to thestub() function, embedding the method name as the �rst argument.

return curry(self.stub, fname, *args, **kwargs)

This approach solves our nested invocation problem. While it is an acceptable solution, it is

needlessly complicated, and requires special treatment ofremote function references when they are passed

as arguments to other remote methods, for instance, creating a special wrapper object to represent remote

references.

Our �nal solution came from a realization that remote functions are very similar to remote objects:

both have a name, an id of the object they belong to, and the UUID of the server on which they reside.

Therefore, in the �nal version of the implementation we return aRemoteObject instance both as references

to objectsandfunctions. A �ag, indicating that an object is callable, is added to theRemoteObject instance

if it represents a function or a method. Thestub() method within theRemoteObject class has been

renamed to__call__() to allow client code to invoke the object like a regular function3. Like the currying

3Python uses the existence of such a method within a class as anindication that instances of the class are callable.
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solution, this approach complies with Python's nested invocation resolution semantics, but does so in a more

Pythonic way.

5.5 Comparison with PYRO

PYRO [20], short for Python Remote Objects, is an advanced and powerful Distributed Object

system that provides an object-oriented form of RPC, somewhat similar to Java RMI [34]. PYRO claims

to be very easy to use but we feel that River's RAI syntax is more natural and superior in its �exibility and

simplicity. To compare the two, we took a simple example fromthe PYRO documentation and wrote an

RAI version of it.

First we de�ne a module to be served to remote clients and nameit testmod.py . This �le is

identical, regardless of whether it is served by PYRO or RAI.It provides a class de�nition with four simple

arithmetic methods.

class testclass:
def mul(s, arg1, arg2): return arg1*arg2
def add(s, arg1, arg2): return arg1+arg2
def sub(s, arg1, arg2): return arg1-arg2
def div(s, arg1, arg2): return arg1/arg2

PYRO requires a server that will provide access to the module. Note thattestclass is rede�ned

here to inherit from PYRO's base object. The server registers itself with PYRO's name server that must be

running on the network and then enters an in�nite loop waiting for client requests.

67



import Pyro.naming
import Pyro.core
from Pyro.errors import PyroError, NamingError

import testmod

class testclass(Pyro.core.ObjBase, testmod.testclass) :
pass

def main():
Pyro.core.initServer()
daemon = Pyro.core.Daemon()
locator = Pyro.naming.NameServerLocator()
print 'searching for Name Server...'
ns = locator.getNS()
daemon.useNameServer(ns)

try:
ns.unregister('test')

except NamingError:
pass

daemon.connect(testclass(), 'test')

print 'Server object "test" ready.'
daemon.requestLoop()

if __name__=="__main__":
main()

Finally, we need a PYRO client that can make use of the remote object we serve. To �nd our

object we contact the PYRO name server that must be running onthe network and obtain the object's URI.

Then we get a proxy reference to the remote object and can begin using it.
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import Pyro.naming, Pyro.core
from Pyro.errors import NamingError

locator = Pyro.naming.NameServerLocator()
print 'Searching Name Server...',
ns = locator.getNS()

print 'finding object'
try:

URI=ns.resolve('test')
print 'URI:',URI

except NamingError,x:
print "Couldn't find object, nameserver says:",x
raise SystemExit

test = Pyro.core.getProxyForURI(URI)

print test.mul(111,9)
print test.add(100,222)
print test.sub(222,100)
print test.div(2.0,9.0)
print test.mul('*',10)
print test.add('String1','String2')

RAI does not require a separate server module; all the necessary code is built into the River frame-

work. A client needs only to locate the necessary server using the standard River discovery mechanism; to

do so, we can simply look for the matching name of the module being served. Once we get a handle to the

remote VR, we instantiate ourtestclass object as we would in any Python program. Note that this step

is somewhat obscure in PYRO: a proxy handle is obtained instead. After that, we call the object's methods

just like in PYRO.
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from river.core.vr import VirtualResource
from river.extensions.remote import RemoteVR

class RAITester (VirtualResource):
def main(self):

try:
vm = self.discover(RAI_module='testmod')[0]

except IndexError:
print 'RAI server not found'
return -1

server = vm['RAI_server']
print 'Found RAI server', server

vr = RemoteVR(server, self)
test = vr.testclass()

print test.mul(111,9)
print test.add(100,222)
print test.sub(222,100)
print test.div(2.0,9.0)
print test.mul('*',10)
print test.add('String1','String2')

In total PYRO requires 3 source �les (module, server, client) and 3 processes (name server, server,

client). RAI, on the other hand, requires only 2 �les (moduleand client) and runs 2 processes (server and

client). No name server is required is used for RAI. We also feel that the RAI syntax is much simpler and

natural, providing more �exibility of use.
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PYRO 213
RAI 941

Table 5.1: Remote Invocation Cost (µs)

Finally, we measured remote function invocation cost with both PYRO and RAI, shown in Ta-

ble 5.1. Here PYRO outperforms RAI because it is a single-threaded library, whereas RAI is part of a

multi-threaded framework. RAI performance is low due to synchronization between multiple threads (e.g.,

the network receive thread) and extra processing overhead in the critical path of network communication.

Also, recall that at any given time, a River process involvesthree separate threads: network thread, Control

VR thread, and application VR (in this case, RAI server) thread. These results are in line with the ping-pong

benchmark results, described in Section 4.6, when run with the smallest buffer size of 128 bytes. The size

of data transmitted by RAI in this case is minimal and thus thesynchronization overhead dominates. The

percent difference between RAI and PYRO performance is approximately equal to the percent difference be-

tween the performance ofRiver andsockets versions of the ping-pong benchmark, as shown in Table 4.1.

In a production River system the performance of small messages would need to be addressed.
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Chapter 6

The Trickle Programming Model

Trickle is an extension to River that provides a simple programming model to write distributed

scripts and programs and brings heterogeneous distributedprogramming to the Python programming lan-

guage. The Trickle interface is explicit, but simple; a programmer can easily express parallel execution of

coarse-grained work. Following the Python philosophy, Trickle provides a few simple mechanisms that can

be learned quickly. At its core, Trickle is a task farming extension to Python, built on top of the RAI mech-

anism described in Chapter 5, but it also provides a rich distributed object system. Unlike other distributed

object systems for Python, such as PYRO [20], Trickle provides a simple namespace that does not require a

dedicated name server or an object broker. Trickle can be used to distribute work statically or dynamically.

As such, it is ideal for extending an existing Python programto take advantage of unused cycles in a network

of machines.

6.1 Programming Model

The Trickle programming model provides a MPMD (multiple program, multiple data) model. It

incorporates three basic concepts: injection, remote access, and asynchronous invocation. An initiating

Trickle program can inject local functions and classes intoremote Trickle VMs, as illustrated in Figure 6.1.

Once injected, remote objects can be instantiated, accessed, and invoked transparently with local VM han-

dles. Using fork/join parallelism, remote code can be invoked asynchronously on remote VMs for true

parallel execution. Finally, Trickle provides a simple mechanism for dynamically scheduling work to re-

mote VMs. This mechanism simpli�es the use of networked machines of varying performance.

The programming model extends the standard Python execution environment by allowing multiple

Python interpreters running River VMs to interact in a coordinated manner. A Trickleinitiator takes care

of deploying appropriate code to all the workers. Note that the worker VMs run no speci�c code; they only
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run the standardriver executable. Just like with the River Core, a user will start blank River VMs on

each machine that can be involved in a distributed computation. Each Trickle worker VM has access to all

resources available to the owner of the River VM process. This means that a Trickle worker can access the

local �le system or any network-mounted �le systems available to the user of the remote VM.
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Figure 6.1: Trickle Model

The Trickle initiator, invoked by thetrickle executable, discovers available VMs and executes

the Trickle program passed to it as a command-line argument.The initiator can issue a command toconnect

to remote River VMs. Once connected, the initiator caninject data, functions, or classes into remote VMs.

Access to remote data or code is achieved through the remote access mechanism, described in Chapter 5.

Remote access is seamless, so a remote request appears as a local request. Consider the simple Trickle

program presented in Figure 6.2.

This code connects to the available River VMs using theconnect() function. A list of VM

handles is returned fromconnect() ; in this case 4 handles are returned. The handles are used forinvoking

remote operations. Initially, each connected VM is idle andcontains a default Python run-time environment.

In order to use a VM, the initiator must use theinject() function on a VM handle or a list of VM handles to

transfer local Python objects from the initiator's environment to the remote VM environments. In addition to

VM handles, a Python object must be passed as a parameter toinject() . Possible Python objects include

data objects, functions, and classes. Usinginject() , the initiator can �ll each VM with any data and

code necessary to carry out a remote computation. In this example, we inject the functionfoo() into each
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1 def foo(x):
2 return x + 10
3
4 vmlist = connect()
5 inject(vmlist, foo)
6 results = [vm.foo(10) for vm in vmlist]
7 print results

$ trickle exsimple.py
[trickle: discovered 4 VMs]
[20, 20, 20, 20]

Figure 6.2: A Simple Trickle Program

discovered VM.

Once objects have been injected into remote VMs, they can be accessed using the VM handles.

We can invoke remote operations synchronously or asynchronously. In this example,foo() is invoked

synchronously on each remote VM using RAI (line 6). Note thatremote access looks similar to local access

except for the VM handle pre�x. Also, this example uses a listcomprehension to collect the results of each

remote invocation. Since we are using synchronous invocation, each remote call tofoo() must complete

before the next call is issued.

Notice that this simple program is completely self-contained. It is not necessary to have any code

on the remote VMs prior to execution. Theinject() method takes care of transferring objects and code

from the initiator to the VMs. This approach makes it is easy to organize small parallel Trickle programs.

Also, compared to an SPMD programming model, the Trickle model is very explicit: a programmer only

injects necessary code into remote VMs. While subtle, we believe many programmers will �nd this model

more natural than a model like MPI [45, 48], in which distributed processes differentiate themselves via a

rank value. Also, unlike distributed object systems, Trickle does not require separate client and server code.

6.1.1 Connecting and Injecting

As described previously, a Trickle initiator usesconnect() to discover remote worker VMs. The

return value ofconnect() is a list of VM handles (vmlist ). Therefore, the number of available remote

servers is computed bylen(vmlist) . It is possible to specify a maximum number of VMs needed for a

particular computation by passing amax argument toconnect() . For example,connect(4) requests a

maximum of 4 VMs. If 4 VMs are not located, an exception is raised. Restricting the number of required

VMs also allows a user to run multiple Trickle programs simultaneously as a single initiator may not need
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all available VMs.

The valid forms of Trickleinject() are:

inject(vm, obj0 [, obj1] ...)
inject(vmlist, obj0 [, obj1] ...)

Trickle injection explicitly places Python objects into remote VMs. It is possible to inject data,

functions, and classes. Theinject() function can take a single VM handle or a VM handle list as the �rst

argument. The remaining arguments are objects to be injected. If a VM handle list is provided, then the

object arguments are injected into each VM in the VM handle list. The injected objects are copies of the

original initiator objects and they can be accessed transparently using a VM handle. The access is similar to

a local access. When an initiator completes execution, injected objects are removed from the remote Trickle

VMs. See Figure 6.3 for different forms of injection.

1 table = { 1 : 'a', 2 : 'b'}
2
3 def find(name, namelist):
4 for i, n in enumerate(namelist):
5 if n == name:
6 return i
7
8 class foo(object):
9 def update(x, y):

10 self.x = x
11 self.y = y
12
13 vmlist = connect()
14 inject(vmlist, table, find, foo)

Figure 6.3: Trickle Injection

6.1.2 Synchronous Remote Access

Once code and data have been injected into remote VMs, these objects can be accessed trans-

parently using synchronous remote access via VM handles. Each remote access invocation is blocking; an

invocation must complete before the program can continue execution. In addition to injected objects, all

Python built-in functions are available for remote invocation.

Figure 6.4 shows how to access remotely injected data. In this case, we have injected a list into
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1 vmlist = connect(4)
2 names = ['Alex', 'Sami', 'Greg', 'Peter']
3 inject(vmlist, names)
4 for i, vm in enumerate(vmlist):
5 vm.names[i] = '*NONE*'
6 print vm.names

$ trickle exsynchdata.py
[trickle: discovered 4 VMs]
['*NONE*', 'Sami', 'Greg', 'Peter']
['Alex', '*NONE*', 'Greg', 'Peter']
['Alex', 'Sami', '*NONE*', 'Peter']
['Alex', 'Sami', 'Greg', '*NONE*']

Figure 6.4: Synchronous Data Access

four remote VMs; each VM gets its own copy of the list. We can transparently perform updates on the

remote lists (line 5). This also works on remote dictionaries and any remote object that supports the item

assignment interface [56].

Both injected functions and Python built-in functions can be invoked remotely using VM handles.

Possible parameter values for remote invocation are only limited to Python data types that can be pickled

(serialized). Figure 6.5 shows how to call an injectedfactorial() function and therange() built-in

function.

Remote object creation and invocation is demonstrated in Figure 6.6. In this case, we are only

creating a remote object on a single Trickle VM in line 13. We invoke the remote object just as we would a

local object on lines 14-16. A remote object will exist on a remote VM as long as there is a local reference

to the proxy object.
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1 def factorial(x):
2 if x == 0: return 1
3 else: return x * factorial(x-1)
4
5 vmlist = connect()
6 inject(vmlist, factorial)
7 for i, vm in enumerate(vmlist):
8 print vm.range(i+1), vm.factorial(i)

$ trickle exsyncfunc.py
[trickle: discovered 4 VMs]
[0] 1
[0, 1] 1
[0, 1, 2] 2
[0, 1, 2, 3] 6

Figure 6.5: Synchronous Function Invocation

1 class Stack(object):
2 def __init__(self):
3 self.stack = []
4 def push(self, x):
5 self.stack.append(x)
6 def pop(self):
7 return self.stack.pop()
8 def __str__(self):
9 return self.stack.__str__()

10
11 vmlist = connect()
12 inject(vmlist, Stack)
13 s = vmlist[0].Stack()
14 s.push('A') ; s.push('B'); s.push('C')
15 s.pop()
16 print s

$ trickle exsynchclass.py
[trickle: discovered 4 VMs]
['A', 'B']

Figure 6.6: Synchronous Object Invocation
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6.1.3 Asynchronous Remote Invocation

Parallel execution is achieved in Trickle with asynchronous remote invocation. Trickle uses a

fork/join paradigm to invoke remote functions or methods asynchronously. The Tricklefork() function

begins the execution of a remote function and returns immediately with a handle. The handle is later used

by ajoin() call to synchronize with the remote invocation. The basicfork() andjoin() functions have

the following forms:

h = fork(vm, func, arg0 [, arg1 ] ...])
hlist = fork(vmlist, func, arg0 [, arg1 ] ...])
hlist = fork(vmlist, funclist, arg0 [, arg1 ] ...])
hlist = fork(vmlist, funclist, arglist)

r = join(h)
rlist = join(hlist)
h, r = joinany(hlist)

These functions are quite �exible; they can be used to fork a single function on a single VM or

invoke a function on multiple VMs. In addition, it is possible to map a list of functions to a list of VMs.

In this case, each VM is invoked with a different function in the function list. The same arguments can be

passed to the function(s) or an argument list can be used to map different arguments to different functions in a

function list. As with remote invocation, any Python data type that can be pickled is a valid argument. When

lists are used, thefunclist andarglist must be of equal length; otherwise an exception is generated.

Thejoin() function waits for all handles provided. However,joinany() waits for the comple-

tion of a single invocation from list of two or more handles; it returns a value and the associated handle.

Figure 6.7 presents different uses offork() andjoin() .

Basic usage offork() andjoin() is shown on lines 10 and 11. A single function is forked on

a single VM with a single argument. The returned handles are used byjoin() on line 11 to wait for the

invocation to �nish execution. Lines 14 and 15 show how to mapa list of functions and a list of arguments

to a list of VMs to fork multiple computations in a single call. Finally, lines 18 and 19 show how to map a

single function to multiple VMs and an argument list so that the function is invoked with different parameter

values on different VMs.

Thefork() function does not use local threads to achieve asynchronousinvocation, rather, a non-

blocking send issues the remote invocation request, as explained in Chapter 5. Thus, each Trickle VM needs

only one computation thread.
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1 def foo(x):
2 return x + 10
3
4 def bar(x):
5 return x + 20
6
7 vmlist = connect()
8 inject(vmlist, foo, bar)
9

10 h0 = fork(vmlist[0], foo, 1); h1 = fork(vmlist[1], bar, 2)
11 r0 = join(h0); r1 = join(h1)
12 print r0, r1
13
14 hlist = fork(vmlist[0:2], [foo, bar], [1, 2])
15 rlist = join(hlist)
16 print rlist
17
18 hlist = fork(vmlist, foo, range(len(vmlist)))
19 print join(hlist)

$ trickle exasynch.py
[trickle: discovered 4 VMs]
11 22
[11, 22]
[10, 11, 12, 13]

Figure 6.7: Asynchronous Invocation

6.1.4 Dynamic Scheduling

The Trickle fork() and join() functions are general enough to implement a variety of ap-

proaches for scheduling work on remote VMs. However, a common idiom is to construct a list of work

and repeatedly assign portions of work to be consumed by codeon remote VMs. Trickle provides the

forkgen() andforkwork() functions to accomplish this task:

rlist = forkgen(vmlist, func, worklist [, chunksize=n])
rlist = forkwork(vmlist, func, worklist [, chunksize=n])

The programmer provides a list of VMs, a worker function, anda list of work. Each work element

can be any Python object. The worker function must be implemented to correctly process the work element

object type or a list of such objects. Theworklist parameter may also be a work generator function,
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provided by the user. Theforkgen() and forkwork() functions will issue work to remote VMs in a

dynamic fashion until all the work is completed. This idiom can be used to take advantage of remote VMs

running on machines of different speeds. The optionalchunksize parameter is used to send work elements

in chunks to remote VMs to reduce network overhead. Theforkgen() function is a Python generator and

should be invoked in afor loop to allow work to be scheduled dynamically. It will return partial results

from remote function invocations as they become available.The forkwork() function will wait for all

invocations to complete and then return a list of results.

Figure 6.8 shows an example of usingforkgen() to calculate a running sum of an integer array.

The array is broken into multiple chunks of work that will be consumed by participating VMs; it is calculated

on line 8. Note that the chunk size is independent of the number of VMs. Any remaining work will be

assigned to one of the VMs. We invokeforkgen() in a for loop on line 11, and add up return values as

they become available. Two VRs were used in this example and thus two partial sums were returned.

1 def rsum(nums):
2 return sum(nums)
3
4 vmlist = connect()
5 inject(vmlist, rsum)
6
7 a = range(0,1000)
8 c = len(a) / len(vmlist)
9

10 total = 0
11 for rv in forkgen(vmlist, rsum, a, c):
12 print 'partial sum =', rv
13 total += rv
14
15 print 'final sum =', total

$ trickle exforkgen.py
partial sum = 124750
partial sum = 374750
final sum = 499500

Figure 6.8: Dynamic Work Scheduling
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6.2 Word Frequency Example

In this section we present a complete Trickle program. Figure 6.9 is a distributed word frequency

counter calledWFreq1. Given a list of �le names,WFreq computes the total count of each unique word

found in all the given �les. This is a common operation used indocument indexing and document analysis.

If the data �les exist on all the remote machines, then the counting phase runs in parallel. Only the work

distribution and merging phases are sequential.

import sys, glob

def wordcount(files):
m = {}
for filename in files:

f = open(filename)
for l in f:

for t in l.split():
m[t] = m.get(t,0) + 1

f.close()
return m

def mergecounts(dlist):
m = {}
for d in dlist:

for w in d:
m[w] = m.get(w,0) + d[w]

return m

if len(sys.argv) != 4:
print 'usage: %s <vmcount> <chunksize> <pattern>' % sys.ar gv[0]
sys.exit(1)

n = int(sys.argv[1])
cs = int(sys.argv[2])
files = glob.glob(sys.argv[3] + '*')

vmlist = connect(n)
inject(vmlist, wordcount)
rlist = forkwork(vmlist, wordcount, files, chunksize=cs)
final = mergecounts(rlist)

Figure 6.9: Document Word Frequency Counter

1Refer to Figure 3.10 for this same example written using River Core API.
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TheWFreq program consists of three parts: a worker function, a merge function, and the Trickle

code to distribute the work. The worker functionwordcount() accepts a list of �le names and computes

a single dictionary that maps words to their corresponding frequencies in all the �les provided as input.

Themergecounts() function simply combines all of the remotely computed word frequency dictionaries.

Finally, the main Trickle code connects to the available Trickle VMs, injects thewordcount() function,

then issuesforkwork() to dynamically schedule provided �le names to the worker function.

6.3 Implementation

Trickle is implemented on top of the River Core and uses the RAI mechanism. Remote object

access, code injection and asynchronous invocation support is provided by RAI (see Chapter 5). Thus, most

Trickle methods are simply wrappers of their respective RAIcounterparts. The only component imple-

mented speci�cally within Trickle is support for dynamic scheduling. The complete source code to Trickle

is shown in Appendix C.3.
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Figure 6.10: Trickle Deployment

6.3.1 Deployment

All Trickle servers start out as blank River VMs, available for use. The Trickle initiator discovers

available VMs and deploys the RAI server VR onto them, as shown in Figure 6.10. Trickle con�gures the
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RAI server to expose the standard Python environment, that is, to run inunrestrictedmode. In this way, once

Trickle client code connects to the remote VM, it can access anything in the exported Python environment.

To protect the River run-time data, the RAI server creates a separateglobals and locals dictionary for

use by injected code. At startup all Python built-in functions are copied to theglobals dictionary to allow

remote access to them.

The Trickle initiator class is a subclass ofVirtualResource . After deploying the RAI server

to available VMs, it saves a list of them internally. This list is used by theconnect() function to create

RemoteVR objects corresponding to all participating RAI servers. This list of RemoveVRobjects is returned

by theconnect() function to the user. The Trickle user code is not imported, since it is not part of any

object. Instead we use the Pythonexecfile() function to execute it within the context of the Trickle

initiator VR.

As described in Section 5.3,RemoteVR and its parent class,RemoteObject , are special proxy

objects used for both the remote VM handles and remote objects. In this way, Trickle can transparently

propagate local invocations to remote VMs. The Trickle client code acquires VM proxy handles with the

connect() function, and then injects or remotely invokes code on them.

Aside fromforkgen() andforkwork() , all other Trickle functions are simply wrappers for their

RAI counterparts with special argument handling to allow lists of VM handles and functions to be passed

in.

6.3.2 Dynamic Scheduling

The Trickle dynamic scheduling mechanism,forkwork() is built using basic asynchronous in-

vocation and Python generators. Internally,forkwork() calls a generator calledforkgen() , as shown in

Figure 6.11.

def forkwork(self, vmlist, fname, work, chunksize=chunks ize):
results = []
for rv in forkgen(vmlist, fname, work, chunksize=cs):

results.append(rv)
return results

Figure 6.11: Implementation offorkwork()

The internalforkgen() routine dispatches work to available remote VMs and waits for invoca-

tions to �nish. Each time a remote invocation completes, a new piece of work, if available, is dispatched to

an available VM. An abbreviated version, without the support for chunksize , is given in Figure 6.12.
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def forkgen(self, vmlist, fname, work):
hlist = []
while True:

while len(work) > 0 and len(vmlist) > 0:
w = work.pop()
vm = vmlist.pop()
hlist.append(fork(vm, fname, w))

if len(hlist) > 0:
h, rv = joinany(hlist)
vmlist.append(h.vm)
yield(rv)

else:
break

Figure 6.12: Implementation offorkgen()

By implementingforkgen() with a Python generator (indicated by using theyield statement)

we simplify the implementation offorkwork() and also provide the programmer with a mechanism to

process partial results while work is executing on remote VMs. This shows how Python generators can be

used to extend the semantics of both thefor statement and list comprehensions in a novel way.

6.4 Discussion

Trickle requires injection to be performed explicitly by the user. For instance, a function cannot

be passed tofork() and invoked remotely unless it is explicitly injected �rst.There are advantages and

disadvantages to this approach. On one hand, a programmer would have to write less code and not worry

about injecting if it was done implicitly by Trickle. On the other hand, our programming model is very

explicit, and we require the programmer to perform that stepfor consistency.

The RAI implementation currently does not support propagating remote object references. For

example, the Trickle initiator code may pass a remote objectreference from one server to a function invoked

on another server. While we allow remote objects to be passedas arguments to functions invoked on the

sameserver, there is no code to handle external remote objects onthe server side.

Likewise, we do not allow callbacks to the initiator — in casea remotely invoked function needs

to make use of objects located on the initiator. The reason behind this is that we maintain a strict client-

server separation: the Trickle initiator (RAI client) executes client code only, and the Trickle VMs (RAI

servers) execute server code only. To support such a mechanism, we would need to allow the Trickle VMs
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to function as RAI clients, and the Trickle initiator, as an RAI server. This would introduce a synchronization

requirement to limit concurrent access to shared data and thus complicate the programming model.

6.5 Comparison with IPython

IPython [50] attempts to create a comprehensive environment for interactive and exploratory com-

puting. It also provides a sophisticated and powerful architecture for distributed computing that abstracts

out parallelism in a very general way enabling many paradigms, such as SPMD, MPMD, or task farming.

As such, we think it worthwhile to compare IPython with its River counterpart, Trickle.

To compare Trickle with IPython we have written an IPython version of the Word Frequency

benchmark, described in Section 6.2. The Trickle version isshown in Appendix A.6 and the IPython version,

in Appendix A.7.

The IPython interface works through an object of typeMultiEngineClient . First, we need to

import the IPython module and instantiate aMultiEngineClient object. This takes care of discovering

and allocating the available hosts, in River terminology. Then we use theget_ids() function, which serves

as an equivalent of Trickle'sconnect() method: it returns a list of IDs of machines that can be used for

parallel computation.

from IPython.kernel import client

mec = client.MultiEngineClient()

ids = mec.get_ids()

With Trickle we can obtain the same list by calling theconnect() function. No import is nec-

essary because the Trickle initiator already populates theglobal namespace with the appropriate method

references.

vrlist = connect()

IPython uses the ”push” functions to put data on the remote side. Unlike Trickle, different func-

tions are used depending on the type of data. For instance, adding a function to the remote side requires the

invocation of thepush_function() method. In this case, we are pushing a function calledwordcount()

to the remote clients. Note that the syntax is reminiscent ofthe SFM syntax: a dictionary of key-value pairs.
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mec.push_function(dict(wordcount=wordcount))

This concept is called injection in Trickle. However, Trickle does not require a special method for

function injection; any type of data can be passed toinject() .

[vr.inject(wordcount) for vr in vrlist]

To put data on the remote hosts with IPython we use thepush() function.

[mec.push(dict(files=slices[i]), targets=i) for i in ids ]

With Trickle we do not need to explicitly inject data if it will be passed in as a function argument;

we simply use it, as we would in a normal Python program.

Finally, to execute the function with the correct argumentsin IPython, we need to pass the appro-

priate Python statementas a stringto theexecute() function. All variables and methods referenced by

the statement need to exist on the remote side. In this case, we have previously pushed thewordcount()

function and thefiles list.

mec.execute('freqs = wordfreq(files)')

With Trickle, we invoke remote functions in a standard Python way and pass in local arguments;

they will be automatically transmitted to the remote side. Note that we use asynchronous execution with

fork() here.

handles = [vr.fork(wordcount, slices[vr]) for vr in vrlist ]

Finally, we collect the results in the form of partial dictionaries from each node. With IPython, we

need to pull the data from the remote side, again, by supplying the variable name as a string.

rvlist = mec.pull('freqs')

With Trickle, we just use the return value as returned by the function. Note that since we use

asynchronous execution here, we collect the return values with thejoin() function.
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rvlist = [h.join() for h in handles]

6.6 Experimental Results

We used a version of the word frequency program, presented inSection 6.2 as a benchmark to

evaluate Trickle performance with a partial Enron Email Dataset [22] given as input. The dataset consisted

of 55,366 �les for a total of 277 MB in size. Three versions of the benchmark were used: a River Core

version, listed in Appendix A.2, a Trickle version, listed in Appendix A.6, and an IPython version, listed in

Appendix A.7.

We ran all versions of thewfreq program on a small cluster to see what kind of speedup is possible.

Our experimental platform consisted of a varying number of identical nodes of a cluster. Each node was

equipped with dual Opteron 270 dual-core processors, 4 gigabytes of RAM, and Gigabit NIC, and all were

connected to an isolated Gigabit network. For all the experiments we used Python 2.4.3 and executed tests

with the -O option (optimization turned on). To obtain results for 32 VMs we ran four River VMs on each

of the eight nodes. Each node was given a complete copy of the data set.

We have compared the performance of the IPython version and the River/Trickle versions using

the same dataset. The River/Trickle versions performed signi�cantly faster, regardless of the number of

VMs participating. Table 6.1 shows the results of running on1, 2, 4, 8, 16, and 32 VMs. Figures 6.13

and 6.14 show the graphs representing both absolute performance and speedup of thewfreq benchmark.

The results shown are an average over three runs. As can be seen in the results, the serial portions of the

code limit the speedup in the case of River and Trickle. Furthermore, the Trickle version is slightly slower

compared to River, as it incurs additional overhead from theRAI layer. However, these results show that it

is relatively easy to leverage multiple machines with Trickle. Additionally, both River and Trickle versions

signi�cantly outperform IPython.

VMs 1 2 4 8 16 32

River Core time 33.88 18.82 11.83 9.12 8.38 8.84
River Core speedup 1.00 1.80 2.86 3.71 4.04 3.83

Trickle time 33.61 19.54 12.54 9.52 9.35 10.67
Trickle speedup 1.00 1.72 2.68 3.53 3.59 3.15

IPython time 46.70 36.51 37.14 42.13 57.83 83.60
IPython speedup 1.00 1.28 1.25 1.11 0.80 0.56

Table 6.1: Word Frequency Results (seconds)
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Figure 6.14: Word Frequency Speedup
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6.7 Trickle Quick Reference

Trickle extends River with a small number of global built-infunctions. A new VM object is used

as a proxy to access remote elements. A quick reference for the Trickle interface is given in Figure 6.15.

# Starting a Trickle program
$ trickle foo.py

# Connecting to Trickle VMs
vmlist = connect([n])

# Injecting objects into a vm or vmlist
# obj can be any type: immutable, mutable, function, class
inject(<vm>|<vmlist>, <obj0> [, <obj1>] ...])

# Synchronous remote access
y = vm.x # get remote value of x
vm.d[x] = y # update a remote list/dict
y = vm.foo(*args) # invoke remote function
f = vm.FooClass(*args) # instantiate a remote object
y = f.bar(x) # invoke remote method

# Asynchronous remote access (parallel invocation)
<h>|<hlist> = fork(<vm>|<vmlist>, <func|funclist>,

(<arg0> [, <arg1> ] ...]) | <arglist>)
<r>|<rlist> = join(<h>|<hlist>)
<r> = joinany(<h>|<hlist>)
<r>|<rlist> = forkjoin(<vm>|<vmlist>, <func|funclist>,

(<arg0> [, <arg1>,] ...]) | <arglist>)
<rlist> = forkwork(<vm>|<vmlist>, <func>, <worklist>

[, chunksize=<n> ])
<r> = forkgen(<vmlist>, <func>, <worklist>

[, chunksize=<n> ])

Figure 6.15: Trickle Quick Reference
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Chapter 7

River MPI Implementation

We have developed a River-based MPI [45, 48] implementation, called rMPI, for the rapid proto-

typing and analysis of MPI functionality. Our base implementation of the MPI 1.2 standard is an extension

to the River Core and lends itself to quick understanding andmodi�cation of point-to-point communication,

collective communication, and derived data types. The rMPIinterface conforms closely to the C MPI in-

terface and can be used to learn about MPI implementation andexplore techniques that would otherwise be

too cumbersome in existing production systems. The rMPI extension is a good example of using River for

understanding the design details of an existing interface and to explore alternative implementations.

7.1 Design

To further demonstrate the capabilities of the River framework and to support rapid prototyping

and easier understanding of MPI implementations we have developed a River extension called rMPI. Unlike

previous approaches to provide a Python interface to MPI libraries [36, 42, 46], rMPI is an implementation

of MPI written entirely in Python; it does not depend on an underlying C MPI implementation.

We have focused on making rMPI as useful as possible by following two important guidelines: (1)

provide a Python MPI interface that strictly conforms to theC MPI interface; and (2) create a small, modular

implementation that supports selective inclusion of MPI functionality as needed (e.g., a derived data type

engine or non-blocking communication). These guidelines have several desirable consequences.

Close conformance to the C MPI interface enables programmers to easily get started with rMPI

by following documentation for the C bindings. Thus, translating MPI programs from C to Python and vice

versa is easy and straightforward. This �uidity makes it possible to leverage Python for rapid application

development and debugging, then migrate to C for performance. Interestingly, our Python MPI interface

conforms more strictly to the MPI standard than popular Python wrappers for the C MPI implementa-
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tions [36, 42, 46]. Unlike existing Python wrappers for MPI,we do not try to make MPI more Python-like.

Instead, we make Python more C-like.

The modularity found in rMPI facilitates rapid developmentand comparison of multiple algo-

rithms for the same functionality. Therefore, rMPI can be used to quantitatively and qualitatively evaluate

implementation techniques. Such evaluation can ultimately be used to guide the evolution of C MPI im-

plementations or aid the development of application-speci�c MPI libraries. Because our implementation

is quite small (the base implementation is 810 lines of Python code), it does not take much effort to begin

making changes and experimenting with new ideas. We allow additional functionality, such as derived data

types and optimized collective communication, to be added as needed.

Our experience with using Python and rMPI for systems development has been quite refreshing

when compared to the conventional approach using C and standard C tools. In contrast to a C MPI 1.2

implementation, such as USFMPI [12], the developer does notbecome tied to the design decisions – in the

case of C, making core changes would often require a signi�cant amount of software engineering. With

rMPI, it is relatively easy to go from an idea to a working implementation. Furthermore, the simplicity of

the rMPI framework allows one to try several different implementation strategies.

7.2 Programming Model

The rMPI interface requires that all names from thempi.py are imported into the target applica-

tion. Also, each rMPI program must de�ne a new class that subclassesMPI. By convention, execution of

each rMPI process begins atmain() . This mimics C convention, including command-line argument passing.

Figure 7.1 shows code for a simple rMPI program.

In C MPI many arguments are supplied as pointers so that variables can be updated within the

MPI calls (e.g.,MPI_Comm_rank(MPI_COMM_WORLD, &rank)). Python does not have an ”address of” (&)

operator. Therefore, in rMPI we introduce a wrapper type calledMPI_Int . New variables can be instantiated

asx = MPI_Int() . Such references can be used to allow MPI functions to modifythe object value. Access

to the object value is achieved via thevalue member: x.value . This simple Python class allows us to

simulate pass by pointer semantics, which allows us to better adhere to the C MPI interface.

An important design decision in the rMPI interface is how to treat send and receive buffers. In C, a

pointer to a region of memory is passed to the MPI communication routines. To retain the order and type of

parameters from the C MPI interface, we decided to require that send and receive buffers be simple Python

lists. We chose to use lists, rather than arrays [55], because of their simpler and more natural syntax. In

Python, lists are passed by reference, so a list reference can serve as a ”pointer” to a buffer. One consequence

of this scheme is that receive buffers must be preallocated.The rMPI routines do not dynamically allocate
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from mpi import *

class Hello(MPI):
def main(self, args):

MPI_Init(args)
rank = MPI_Int()
np = MPI_Int()
MPI_Comm_rank(MPI_COMM_WORLD, rank)
MPI_Comm_size(MPI_COMM_WORLD, np)
status = MPI_Status()

recvbuf = [ 0.0 ] * 4
sendbuf = [ rank.value * 100.0 ] * 4

if rank.value == 0:
for i in xrange(1, np.value):

MPI_Recv(recvbuf, 4, MPI_FLOAT, i, 0, MPI_COMM_WORLD, sta tus)
print 'From rank %d:' % (i), recvbuf

else:
MPI_Send(sendbuf, 4, MPI_FLOAT, 0, 0, MPI_COMM_WORLD)

MPI_Finalize()

Figure 7.1: A Simple rMPI Program

space for incoming data. Again, this mimics the C MPI interface and also helps avoid excess copying. The

Hello example in Figure 7.1 sends a list of 4 elements from each non-rank 0 process to rank 0. The receive

buffer in rank 0 is reused for each message.

Using a simple Python list reference works in many situations. However, a common idiom in C

MPI is to pass a pointer that addresses a location within an allocated memory region. This is especially

useful in conjunction with derived data types in order to relocate data, e.g., transposing a row to a column in

a matrix. To support this idiom in Python, we allow buffer references to be tuples of a list reference and an

offset into the list:(buf, offset) . This notation, while not strictly C MPI notation, allows usto retain the

number and type of the parameters to the MPI functions while supporting C-like semantics. For example,

say you have a list with 100 doubles. You can receive 10 doubles starting at offset 50 like this:

recvbuf = [ 0.0 ] * 100
MPI_Recv((recvbuf, 50), 10, MPI_DOUBLE, src, tag, comm, st atus)

The base rMPI implementation supports blocking send (MPI_Send() ) and receive (MPI_Recv() ).
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The base can be extended to include non-blocking communication and corresponding support functions

(e.g.,MPI_Isend() , MPI_Irecv() , MPI_Wait() , etc.). In addition, the base implementation includes naive

implementations of all the major collective communicationfunctions. Most of the implementations have

linear time complexity in the number of processes. Such implementations keep the base relatively small

and easier to understand initially. However, we provide an extension built on top of the non-blocking

extension that provides optimized implementations of all of the collectives. We have implemented most

of the algorithms presented by Thakuret al in [72].

We provide a fairly complete derived data type engine for rMPI programs as an extension to the

base implementation. For example, the following code transposes ann � n matrix using point-to-point

communication and derived data types. Note that the matrix Ais simply a 1-dimensional Python list that is

used to store a 2-dimensional array.

A = [0.0] * (n * n)

column_t = MPI_Datatype()
MPI_Type_vector(n, 1, n, MPI_DOUBLE, column_t)
MPI_Type_commit(column_t)

# send columns
for i in xrange(n):

MPI_Send((A,i), 1, column_t, rank, tag, MPI_COMM_WORLD)

# receive rows
for i in xrange(n):

MPI_Recv((A,i*n), n, MPI_DOUBLE, rank, tag, MPI_COMM_WOR LD, None)

7.3 Implementation

Rather than create a single monolithic implementation of the rMPI Python interface, we provide a

modular framework in which MPI functionality can be included selectively. We provide three main building

blocks: a derived data type engine, non-blocking communication support, and optimized collective commu-

nication operations. The purpose of structuring rMPI in this manner is two-fold: to simplify the code for the

novice and to encourage experimentation in the major submodules.

These modules are provided as derivations of theMPI base class. User programs, in turn, are

inherited from these derived classes. Since Python supports multiple inheritance, a user program may specify

two different submodules as its base classes to include support for, say, both derived datatypes and non-
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blocking communication.

The complete rMPI source code is included in Appendix C.

7.3.1 Base Implementation

The base rMPI implementation consists of blocking point-to-point operations and non-optimized

collectives. Using River, the base supports process discovery and the mapping of River UUIDs to MPI

ranks. It provides basic support for MPI communicators and groups and can redirect console output from

remote rMPI processes to the initiating process. In addition, it can display Python exceptions on the initiator

so that errors in remote processes can be detected. Finally,the base implementation supports both eager and

synchronized sends. The source code of the base implementation is shown in Appendix C.4.

Using Super Flexible Messaging (SFM) as the basic communication mechanism facilitates rapid

development. Since messages are dynamically typed, there is no need to specify separate message types (as

would be done in a C implementation); everything is speci�edat the call site of a send. Figures 7.2 and 7.3

show how SFM is used to implement �ow control inmpi_send_buf() andmpi_recv_buf() , respectively,

which are the basic building blocks for all rMPI communication routines. The code fragment in Figure 7.2

allows large messages to be sent in chunks so that a complete copy of a data buffer is not needed. The SFM

notation makes it relatively easy to implement a chunk protocol and ensure that data is transferred in the

proper order.

All the major MPI peer-to-peer and collective functions areimplemented usingmpi_send_buf()

andmpi_recv_buf() . They allow for the sending of small messages in an eager fashion or large messages in

a sequence of chunks. The parameters include:buf (a list of simple values),offset (index intobuf ), count

(the number of values to send),datatype (the data type of the values inbuf ), src (the rank of the sender),

dst (the rank of the receiver),tag (an MPI idiom for naming transfers), andcomm(the communication

namespace).

The small message code sends the entirebuf in a single message. By setting up the proper values

for start , end, andsize , as well as settinglast to True , the receiver is given all the information needed to

process the send request. The large message code walks through thebuf in chunksize increments. On each

iteration, the values forstart , end, andsize are updated appropriately. Once the last chunk is identi�ed,

last is set toTrue .
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def mpi_send_buf(self, buf, offset, count, datatype, dest , tag, comm):
destUuid = comm.rankToUuid(dest)
chunksize = self.mpi_getchunksize(datatype, count)
offset = 0

if isinstance(buf, tuple):
buf, offset = buf

sendsize = count
if sendsize <= chunksize: # small send (eager)

self.send(dest=destUuid, tag=tag, buf=buf[offset:offs et+count],
start=0, end=count, size=count, mtype='small', last=Tru e)

else: # send large buf
last = False; start = offset; end = start + chunksize

while True:
self.send(dest=destUuid, tag=tag, buf=buf[start:end],

start=start-offset, end=end-offset, size=chunksize,
mtype='large', last=last)

m = self.recv(src=destUuid, tag=tag, ack=True)

if last:
break

start += chunksize
end = start + chunksize

if (start + chunksize) >= (offset + count):
end = offset + count
chunksize = end - start
last = True

return MPI_SUCCESS

Figure 7.2: Sending Data in rMPI
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def mpi_recv_buf(self, buf, offset, count, datatype, src, tag, comm):
srcUuid = comm.rankToUuid(src)

while True:
m = self.recv(src=srcUuid, tag=tag)
if m.mtype == 'large':

self.send(dest=srcUuid, tag=tag, ack=True)

buf[m.start+offset:m.end+offset] = m.buf[0:m.size]
if m.last:

break

return MPI_SUCCESS

Figure 7.3: Receiving Data in rMPI

7.3.2 Derived Datatypes

Our derived datatype engine supports the most common MPI types, includingcontiguous ,

vector , andindexed . The implementation is a seamless extension to the base provided as another class,

calledMPI DD, derived from theMPI base class. User programs that need to make use of derived datatypes

inherit their class fromMPI DDinstead ofMPI to include support for derived datatypes. The source code of

the derived datatypes support is presented in Appendix C.5.

Upon new datatype initialization, we create a map representing the memory regions occupied by

the new type and store it as a collection ofchunks. For instance, acontiguous type would be composed of

a single chunk of sizen. By contrast, a simplevector type would be composed ofn chunks of size 1. The

send mechanism transparently extracts these chunks from a derived datatype instance at transmission. The

current implementation uses apackingscheme to construct on-the-wire data. However, the engine could be

modi�ed to support more sophisticated on-the-wire formats(e.g., to avoid copying).

Figure 7.4 shows our implementation of thevector datatype. If the old type is a base type, we

simply create a chunk for every element. However, if the old type is derived and we are creating a recursively

derived datatype, we need to copy the chunks from the old type, making sure to calculate proper offsets. For

instance, if we have a matrix, we can create acolumntype, and then recursively another type representing

every other columnof the matrix.

As we add a new chunk to a datatype map, we go through the list ofexisting chunks and check

if the new chunk can be combined with an existing one. This is done to minimize the total number of

chunks. Moreover, atcommittime (in theMPI Type commit() function), we iterate through the list again
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and attempt to combine contiguous chunks. This is useful when, say, a matrix type is derived from a column

type, and results in a single chunk of memory describing the matrix.

def MPI_Type_vector(self, count, block_length, stride, o ld_type, new_type):
# old type must exist (either basic or derived)
if not mpi_types.has_key(old_type):

return MPI_ERR_ARG

# derived type: each element may have multiple chunks
if isinstance(old_type, MPI_Datatype):

n = block_length * old_type.size
w = block_length * old_type.width
for i in xrange(count):

offset = i * stride * old_type.width
for j in xrange(block_length):

new_type.copy_chunks(old_type, offset + j)

# base type: each element is its own chunk
else:

n = block_length
w = block_length
for i in xrange(count):

offset = i * stride
new_type.add_chunk(offset, block_length)

new_type.count = len(new_type.chunks)
new_type.size = n * count
new_type.width = w

# "register" the new type
mpi_types[new_type] = mpi_robj.next()

return MPI_SUCCESS

Figure 7.4: Implementation of the Vector Derived Datatype

7.3.3 Non-blocking Communication

Simple blocking sends and receives are relatively easy to understand. However, production MPI

implementations support non-blocking communication. Such support can signi�cantly complicate matters.

We provide it as an extension (another derivation of theMPI base class) so that it can be studied and evaluated

independently. Our code turnsMPI_Isend() andMPI_Irecv() calls intoTransferRequests . Only apost
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is transmitted, but the actual communication takes place when a transfer request is processed: at any point

a blocking call is made (e.g.,MPI_Wait() ). We create an instance of atransfer managerclass, which

keeps track of outstanding requests and processes them as needed. This is similar to how non-blocking

communication is implemented in production single-threaded MPI systems. To achieve true parallelism, a

communication thread may be introduced, as done in USFMPI [12]. Figure 7.5 shows our request processing

function. The complete source code of non-blocking communication support is included in Appendix C.6.

7.3.4 Optimized Collectives

Due to the requirements of optimized collectives, they are built on top of non-blocking commu-

nication. Thus, it is derived from theMPI NB class, rather than the baseMPI class. We have implemented

many of the algorithms from [72] as well as dissemination allgather [7]. Exploring and evaluating optimized

collectives in rMPI is quite easy since Python provides a more compact notation that is more pseudo-code-

like when compared to C. For example, we have implemented theBruck allgather algorithm, shown in

Figure 7.6. The source code of the optimized collectives implementation is shown in Appendix C.7.
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def trans_process_request(self, request):
if request.trans_status == TRANS_STAT_DONE:

self.transManager.unregister(request)
return

# a confirmed send request and the first chunk is not sent yet
if request.type == MPI_REQ_SEND and \

request.trans_status == TRANS_STAT_WORK and \
request.trans_chunknum == 0:

self.trans_send_chunk(request)

while (request.trans_status != TRANS_STAT_DONE):
p = self.recv(dest=self.uuid,

mtype=(lambda x: x=='sendpost' or x=='recvpost' or \
x=='send' or x=='recv'))

srcRank = self.uuidToRank[p.src]
if p.mtype == "sendpost" :

recvreq = self.transManager.recvready(srcRank, p.tag, p .sender)

elif p.mtype == "recvpost":
sendreq = self.transManager.sendready(srcRank, p.tag, p .recver)
# if sendreq is not registered yet,
# this post will be save in transManager.recvqueue
if sendreq != None:

self.trans_send_chunk(sendreq)

elif p.mtype == "send":
req = self.transManager.getreq(p.recver)
self.trans_recv_packet(p, req)

elif p.mtype == "recv":
sendreq = self.transManager.getreq(p.sender)
self.trans_send_chunk(sendreq)

self.transManager.unregister(request)

Figure 7.5: Non-blocking Request Processing Function in rMPI
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def MPI_AG_Bruck(self, sendbuf, sendcount, sendtype, rec vbuf, recvcount,
recvtype, comm):

msgUid = self.getMsgUid()
size = comm.size()
power2 = math.floor(math.log(size, 2))
steps = int(math.ceil(math.log(size, 2)))
status = [MPI_Status(), MPI_Status()]
recvbuf[0:sendcount] = sendbuf
sendIndex = 0

for step in xrange(steps):
recvIndex = 2**step * sendcount

if (step == power2):
sendcnt= (size - 2**step) * sendcount

else:
sendcnt = 2**step * sendcount

destNode = (self.rank.value - 2**step) % size
srcNode = (self.rank.value + 2**step) % size
send_req = MPI_Request(); recv_req = MPI_Request()

MPI_Isend((recvbuf,sendIndex), sendcnt, sendtype, dest Node, msgUid,
comm, send_req)

MPI_Irecv((recvbuf, recvIndex), sendcnt, recvtype, srcN ode, msgUid,
comm, recv_req)

MPI_Waitall(2, [send_req, recv_req], status)

if self.rank.value > 0: # reorder
for i in xrange(size - self.rank.value):

recvbuf.extend(recvbuf[:sendcount])
del recvbuf[:sendcount]

return MPI_SUCCESS

Figure 7.6: The Bruck Allgather Algorithm in rMPI
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7.4 Comparison with other Python MPI packages

There are several MPI packages available for Python; all of them are Python bindings to a C/MPI

library, rather than an implementation from scratch like rMPI. The most popular ones are pyMPI [42],

MYMPI [36], and PyPar [46]. We examine all three packages andcompare them to rMPI. Of the three,

MYMPI adheres most closely to the MPI standard, however, we believe that rMPI is superior in this regard.

We found all three packages lacking in the functionality they provide: MYMPI is again the most complete,

implementing 30 of the 120+ MPI calls, but still lacks such features as collective communication operations.

For comparison, rMPI implements 48 MPI calls, including non-blocking and collective communication

operations.

The pyMPI package is a special version of the Python interpreter along with a module. Programs

written in pyMPI do not callMPI_Init() . Instead, it is called implicitly when the interpreter is launched,

somewhat breaking the MPI standard semantics. In contrast,MYMPI and PyPar are only modules that

can be used with a standard Python interpreter. In MYMPI, programs explicitly callMPI_Init() . PyPar

resembles the C MPI interface the least and also invokesMPI_Init() implicitly.

There is a fundamental difference in the semantics of pyMPI and the other two packages. While

pyMPI as the interpreter is a parallel application, with MYMPI and PyPar, the code executed by the standard

interpreter is the parallel application. MYMPI and PyPar are much smaller since they are composed of only

one Python module, not a full interpreter.

MYMPI claims to match more closely the syntax of C and Fortranthan pyMPI and PyPar. MYMPI

arguments are explicit but many conventions are broken. Forexample, buffer references are returned by

MPI_Recv() and other communication functions instead of error codes. With pyMPI many arguments, such

as communicator and status, are implicit and omitted. We believe that rMPI is superior in adherence to the

true MPI semantics and syntax, when compared to the other MPIwrappers.

To compare, let us examine the invocation ofMPI_Recv in all the packages. The C prototype and

invocations in pyMPI, PyPar, MYMPI, and rMPI are shown in Table 7.1.

With pyMPI most arguments are implicit and are, in fact, omitted from the function calls. For

instance, the communicator is always assumed to beMPI_COMM_WORLDand it is not possible to specify a

different one. As such, the only parameter passed in is the rank of source from which to receive. The return

value is the buffer where the received data is stored. There is no support for specifying tags or custom

communicators or datatypes. Thus, there is no support for derived datatypes either. Likewise, PyPar lacks

the support for all three. Again, it is only possible to specify the source rank and the return value is the

buffer where data is stored.

MYMPI allows the programmer to pass in a datatype as well as a tag and a communicator. It
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Package Semantics

C MPI int MPI Recv(void *buf, int count, MPI Datatype datatype,
int source, int tag, MPI Comm comm, MPIStatus *status);

pyMPI buf = mpi.recv(source)
PyPar buf = pypar.receive(source)
MYMPI buffer = mpi.mpi recv(count, datatype, source, tag, communicator)
rMPI rv = self.MPI Recv(buf, count, datatype, source, tag

communicator, status)

Table 7.1:MPI Recv() Semantics in Various MPI Implementations

should be noted, however, that only basic types, such as an integer or a double, are supported. The return

value is once again a buffer reference, not an error code. This changes the order of arguments, sincebuffer

needs to be speci�ed as the �rst argument. Also, the last argument,status , is completely omitted.

On the other hand, rMPI preserves all arguments and their order to simplify porting existing code

to and from C. An object of typeMPI_Status() is used in places where a pointer tostatus is passed in,

as described in Section 7.2, orNone can be speci�ed in place ofNULL. Finally, rMPI provides considerable

support for derived datatypes, as presented in Section 7.3.2.

7.5 Experimental Results

We have compared the performance of rMPI with MYMPI, as well as C/MPI, using our Conjugate

Gradient (CG) benchmark. We ran all versions of the CG solveron a small cluster to see what kind of

speedup is possible. Our experimental platform consisted of a varying number of identical nodes of a

cluster. Each node was equipped with dual Opteron 270 dual-core processors, 4 gigabytes of RAM, and

Gigabit NIC, and all were connected to an isolated Gigabit network. For all the experiments we used Python

2.4.3 and executed tests with the-O option (optimization turned on). The C/MPI version was compiled with

-O2. To obtain results for 32 VMs we ran four instances of the program on each of the eight nodes.

We have implemented a parallel conjugate gradient (CG) solver in both rMPI and MYMPI, com-

piled to use the LAM MPI library. We chose to use MYMPI in our testing, rather than pyMPI or PyPar,

because it was the most complete and stable implementation,and most closely followed the MPI standard.

Additionally, we provide the performance of a C/MPI CG solver and the River Core version for reference.

A matrix size of 2048� 2048 doubles was used as input. Table 7.2 presents the performance and speedup

of all four versions. Figure 7.7 shows a graph of the absoluteperformance, and Figure 7.8, of the speedups.

The results shown are an average over three runs.

It is worth noting that the absolute performance of MYMPI andrMPI is approximately the same.
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VMs 1 2 4 8 16 32

rMPI time 6371 3433 1757 959 569 491
rMPI speedup 1.00 1.86 3.63 6.64 11.20 12.98

River time 6375 3389 1704 917 505 443
River speedup 1.00 1.88 3.74 6.95 12.62 14.39

MYMPI time 6322 3776 1860 962 498 273
MYMPI speedup 1.00 1.67 3.40 6.57 12.69 23.16

C/MPI time 81.95 42.04 24.63 25.32 16.22 11.41
C/MPI speedup 1.00 1.95 3.32 3.23 5.05 7.18

Table 7.2: rMPI Conjugate Gradients Solver Results (seconds)

This is to be expected, since the computation is done in Python, even though MYMPI uses the C MPI

implementation for communication, whereas rMPI does everything in Python. As the number of VMs

increases, so does the ratio of communication to computation. Thus, we see decreased performance of rMPI

compared to MYMPI in the case of 32 VMs. When compared with theC version, the rMPI implementation

appears to exhibit better speedup. However, this is becausein rMPI computation in Python dominates the

cost of communication. In C, the cost of communication begins to dominate much sooner. The absolute

performance of rMPI and MYMPI for this problem is about 75 times slower than the C MPI implementation

on average.
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Chapter 8

Conclusions and Future Work

This chapter presents some concluding remarks, re�ectionson our experience with River devel-

opment, and offers directions for future work.

8.1 Experience with River Development

River has been a very enjoyable project to work on. It is our sincere hope that it will continue its

existence beyond this thesis. It has already been used successfully in graduate parallel computing classes

at USF. Trickle, for example, together with the Python Imaging Library [52], has been used for distributed

image processing and movie creation. We would like to open upthe whole River framework and its com-

ponents to further developments by releasing it as an open source project. To that extent, we have made

the distribution freely available on our website [66] and several people have already expressed interest in

integrating it with their projects.

Compared to previous parallel and distributed systems, River is unique in its ability to allow a pro-

grammer to quickly move from a new idea to a working prototype. A negative consequence of prototyping

with conventional languages is that the programmer becomestied to the design decisions at an early stage

because making changes to the core of a run-time system can bea substantial engineering effort. River, by

contrast, was speci�cally designed to allow considerable changes and additions with a minimal amount of

work. The simplicity and elegance of the River core combinedwith Python's dynamic typing and concise

notation make it easy to rapidly develop a variety of parallel run-time systems. Largely, this is a testament

to Python's �exibility and ease of use.

The choice of using Python as the implementation language was probably most instrumental to

River's success. Certainly, Python has its own disadvantages for systems development, most notable of

which is performance. Yet, in our opinion, the �exibility and ease of modi�cation that Python allows far
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outweigh the performance drawbacks. On several occasions,we were able to move from a discussion of a

feature or modi�cation to its implementation within minutes, practically modifying River ”on the �y!”

The single most important piece of the River framework is undoubtedly the Super Flexible Mes-

saging (SFM) mechanism. It allowed us to transmit arbitrarydata without spending any time on protocol

design. Again, this would not be possible without language support. When designing the SFM framework

itself, we wanted an ef�cient send/receive mechanism so we decided to build our underlying protocol on

top of sockets. Prior experience in implementing MPI from scratch [12] led us to focus on developing a

�xed message structure at �rst. However, we did not yet know what we wanted in the message structure

and concluded that a lazy approach would be best to encouragerapid development, so we decided that a

message could hold anything. Python's �exibility and ease of use has allowed to us to experiment with

different approaches in a short amount of time. River attempts to conform to the same ease-of-use princi-

ples. For example, the SFM concept has been extremely successful in facilitating rapid development of both

distributed run-time systems (RAI, Trickle, rMPI) and applications.

When running our experiments, we noticed that our simple discovery mechanism was not robust

enough in its original implementation to reliably locate more than 12-16 VMs. Python's and River's �exi-

bility allowed us to easily modify our code within minutes tomake discovery more robust by sending out

more than one discover request. In the end, we were able to reliably discover 96 River VMs running on 24

nodes on a gigabit network with just �ve discover requests.

Such �exibility of the underlying run-time system certainly lends itself to River's usage for edu-

cation in parallel programming classes, where students canlearn about implementing a parallel system and

quickly move from an idea to experimentation with an existing system without having to design something

from scratch. River's design has been an ongoing process that happened in parallel with its implementation

and we believe it is well thought-out and easy to understand.

Additionally, the code base is relatively small; the River core is under 3000 lines of code and

under 6000 lines with all the extensions, including rMPI. Table 8.1 shows the lines of code counts of River

components. A similar project done in C would consist of several thousand lines of code.

River Core 2744
RAI 535
Trickle 352
rMPI 1987

Table 8.1: Lines of Code of River Components
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8.2 Future Work

While River is certainly usable in its present state, it would greatly bene�t from additional features.

To that extent, we think there are several directions worth exploring.

While we were able to make our discovery mechanism more robust by sending out multiple re-

quests, this solution will not scale well. A better solutionwould be some sort of a tree broadcast, or the

election of a ”master” VM to keep track of VMs coming and leaving and maintain a list that would then be

provided to initiators upon request, such as thegroup membership protocol, described in [9]. This would

avoid the delay currently present during the discovery timeand potentially scale to hundreds of nodes.

The SFM model is an excellent approach to specifying and transmitting arbitrary data but addi-

tional constructs to express various conditions would be bene�cial. For example, there is no way to apply

logical constraints across multiple message �elds. Recallfrom Chapter 3 that SFM allows us to match a

message based on multiple values of an attribute using alambda function.

m = recv(tag=lambda x: x == 23 or x == 42)

However, this only allows matching on a subset ofone attribute; there is currently no way to

specify that oneor another attribute should be matched. For example, if we wantto match a message based

on its sourceor its tag, the current semantics do not give us a way to accomplish that. One possibility would

be to augment the SFM semantics and introduce a reserved keyword argument, such asOR, whose value

would be a tuple of possible attribute matches.

m = recv(OR=(tag=42, src=A))

This would provide logical OR semantics across multiple message attributes. Specifying addi-

tional attributes in therecv() function call would continue serving as a logical AND condition, as it does

currently.

River would also bene�t from additional support for fault tolerance. As discussed in Section 4.5,

there exists a version of the framework built on top of Stackless Python [73, 69] and described in [6].

However, that branch of the code needs to be completed and rigorously tested. Once completed, it will

provide state management for River applications, allowingthem to be checkpointed or even seamlessly

moved to another VM.

To improve performance of River applications, there could be a River/Python to C translator. It

could be more speci�c and target, for instance, MPI applications to facilitate going from rMPI to C/MPI.
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Another idea would be to rewrite the River Core in RPython [54] (a restricted subset of Python that can

be easily translated to C). A River Core engine with SFM support, written in C, would also be bene�cial.

Implementing SFM in C would require additional support for our extended syntax, however.

To better support multi-core and multi-processor machines, River could be implemented on top of

the newmultiprocessing Python module [58]. Themultiprocessing module is a package that supports

spawning processes using an API similar to thethreading module, currently used in River. It effectively

uses subprocesses, instead of threads, thereby avoiding performance drawbacks associated with the Python

thread model. Queues or pipes are used for synchronization and communication between processes. Since

the data will be located on the same machine, no network communication is necessary and this will simplify

the River code and improve performance. Furthermore, another possibility is to use themultiprocessing

module to completely eliminate threads from River and replace them with subprocesses. Thus, there would

be a separate subprocess running the network receive function and yet another one running the Control VR.

Communication between them can be achieved using shared memory, queues, and pipes. In many cases

(refer to the source code in Appendix B.2), the threads currently synchronize using a local socket, so the

change to subprocesses will not affect the code much. The biggest modi�cation would involve rewriting our

Queue implementation to support subprocesses instead of threads.

Additional performance improvements can come from using the new Python Buffer API [60] for

communication. This API can be used by an object to expose itsdata in a raw, byte-oriented format. Clients

of the object can use the buffer interface to access the object data directly, without needing to copy it �rst.

Avoiding the extra copy would speed up the communication framework in River and all its extensions.

As discussed in Chapter 4, we assume a secure network and thusdo very little to guarantee data

security and integrity. River would certainly bene�t from amore stringent security model, perhaps with

underlying support for secure transport mechanisms, such as SSL.

Finally, River can be used as the underlying engine in a cloudsystem. Projects like Google's

App Engine [2] present a very restricted Python environmentfor serving web pages and web applications.

River can be adapted to serve the purpose of virtualizing clusters in the Cloud and presenting a platform for

distributed cloud computing.
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Appendix A

Examples Source Code

This appendix presents the complete source code to sample River

programs from Chapter 3.

A.1 Monte Carlo Pi Calculator [mcpi.py]

import math, random, time, socket, sys
from river.core.vr import VirtualResource

class MCpi (VirtualResource):
def __init__(self, **kwargs):

VirtualResource.__init__(self, **kwargs)
self.host = socket.gethostname()

def vr_init(self):
if len(self.args) < 2:

print 'usage: %s <n>' % self.args[0]
return False

print '%s > Deploying MCpi' % self.host
VMs = self.allocate(self.discover())
for vm in VMs:

print ' %s: %s %s %s %s %s %s' % (vm['host'], vm['version'],
vm['os'], vm['arch'], vm['pyver'], vm['status'], vm['us er'])

VMs = self.deploy(VMs=VMs, module=self.__module__, func ='slave')

self.slaves = [vm['uuid'] for vm in VMs]

return True

def master(self, n):

print '%s > master' % self.host, self.uuid
print '%s > slaves:' % self.host, self.slaves
numslaves = len(self.slaves)

print '%s > sending work to %d slaves' % (self.host, numslave s)
for uuid in self.slaves:

self.send(dest=uuid, tag='n', n=n/numslaves)

in_circle = 0
print '%s > receiving %d results' % (self.host, numslaves)
while numslaves > 0:

p = self.recv(tag='result')
in_circle += p.result
numslaves -= 1

pi = 4.0 * in_circle / n
PI = 4.0 * math.atan(1.0)
print 'PI = %f, our approximation = %f' % (PI, pi)

def slave(self):
print '%s > slave' % self.host, self.uuid
master = self.parent

print '%s > waiting for work' % self.host
p = self.recv(src=master, tag='n')
print '%s > got work: N=%d' % (self.host, p.n)

in_circle = 0
for i in range(0, p.n):

x = 2.0 * random.random() - 1.0
y = 2.0 * random.random() - 1.0
length_sqr = x * x + y * y
if length_sqr <= 1.0: in_circle += 1

print '%s > sending results' % self.host
self.send(dest=master, result=in_circle, tag='result' )

def main(self):
print 'MCpi master/slave version starting'
print ' my UUID:', self.uuid
print ' args: ', self.args

if len(self.slaves) < 1:
print 'ERROR: need at least one slave'
return -1

stime = time.time()
self.master(int(self.args[1]))
ftime = time.time()
print '%s> %s seconds' % (self.host, ftime-stime)
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A.2 Word Frequency Counter [wfreq.py]

import time, socket
from river.core.vr import VirtualResource

class WFreq (VirtualResource):
def __init__(self, **kwargs):

VirtualResource.__init__(self, **kwargs)
self.host = socket.gethostname()

def vr_init(self):
VMs = self.allocate(self.discover())
VMs = self.deploy(VMs=VMs, module=self.__module__, func ='worker')

self.workers = [vm['uuid'] for vm in VMs]

return True

def worker(self):
p = self.recv(src=self.parent, tag='files')

m = {}
for file in p.files:

self.wordcount(file, m)

count = 0
for w in m: count += m[w]

print '%s> local count %d' % (self.host, count)

self.send(dest=self.parent, tag='result', result=m)

def wordcount(self, filename, m):
print '%s> %s' % (self.host, filename)
f = open(filename)
for l in f:

tokens = l.split()
for t in tokens:

m[t] = m.get(t, 0) + 1
f.close()

def main(self):
if len(self.args) < 2:

print 'usage: %s <files>' % self.args[0]
return

files = self.args[1:]
slices = {}
size = len(self.workers)
slice = len(files) / size
extras = len(files) % size
end = 0
for worker in self.workers:

beg = end
end = beg+slice
if extras:

end += 1
extras -= 1

slices[worker] = files[beg:end]

stime = time.time()

for worker in self.workers:
self.send(dest=worker, tag='files', files=slices[work er])

m = {}
for worker in self.workers:

p = self.recv(tag='result')
rm = p.result
for w in rm:

m[w] = m.get(w, 0) + rm.get(w, 0)

count = 0
for w in m: count += m[w]

print '%s> global count %d' % (self.host, count)
ftime = time.time()
print '%s> %s seconds' % (self.host, (ftime - stime))

A.3 Conjugate Gradients Solver [rcg.py]

import sys, time, getopt, operator
from river.core.vr import VirtualResource

class rConGrad (VirtualResource):
def vr_init(self):

vmlist = self.deploy(self.allocate(self.discover()),
module=self.__module__, func='worker')

print 'deployed on %d VMs' % len(vmlist)
for vm in vmlist:

print ' %s' % vm['host']

self.workers = [vm['uuid'] for vm in vmlist]

return True

def worker(self):
# receive the parameters from parent / master / process 0
p = self.recv(src=self.parent, tag='init')

verbose = p.verbose
self.peers = p.peers
globaln = p.globaln
t = p.t
iters = p.iters
np = len(self.peers)
n = globaln / np
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if verbose:
print globaln, t, iters
print self.peers

# remove self from peerlist
# this really only matters to master (process 0)
self.peers.remove(self.uuid)

# receive a piece of matrix A
p = self.recv(src=self.parent, tag='A')
A = p.A
if verbose:

print_matrix(A)

# receive a piece of vector b
p = self.recv(src=self.parent, tag='b')
b = p.b
if verbose:

print_vector(b)

k = 0
x = [0.0] * n
r = b

dp = self.pdot(r, r)
dp0 = dp
while dp > t and k < iters:

k += 1
if k == 1:

p = r[:]
else:

beta = dp / dp0
p = daxpy(beta, p, r)

s = self.pmatmul(A, p)
alpha = dp / self.pdot(p, s)
x = daypx(alpha, x, p)
r = daypx(0 - alpha, r, s)

dp0 = dp
dp = self.pdot(r, r)

# send results to parent
self.send(dest=self.parent, tag='done', k=k, x=x)

def pdot(self, x, y):
local = dot(x, y)

if self.uuid != self.parent:
self.send(dest=self.parent, local=local, tag='pdot')
p = self.recv(src=self.parent, tag='allreduce')
return p.result

else:
for w in self.peers:

p = self.recv(tag='pdot')

local += p.local

for p in self.peers:
self.send(dest=p, result=local, tag='allreduce')

return local

def pmatmul(self, A, x):
# we need to gather the global x here

if self.uuid != self.parent:
self.send(dest=self.parent, x=x, tag='pmatmul')
p = self.recv(src=self.parent, tag='allgather')
globalx = p.globalx

else:
globalx = x[:]
for w in self.peers:

p = self.recv(src=w, tag='pmatmul')
globalx += p.x

for w in self.peers:
self.send(dest=w, globalx=globalx, tag='allgather')

return matmul(A, globalx)

def main(self):
verbose = False

opts,args = getopt.getopt(self.args[1:], 'v')
for o,a in opts:

if o == '-v': verbose = True

if len(args) < 1:
print 'usage: %s [-v] <input file>' % self.args[0]
return

# since initiator / process 0 will be doing work too,
# we'll make it seem like he is no different from
# other VRs... MPI-style :)
self.parent = self.uuid
self.workers.insert(0, self.uuid)
np = len(self.workers)

# read parameters
f = open(args[0])
globaln = int(f.readline())
t = float(f.readline())
iters = int(f.readline())

if globaln % np != 0:
print 'error: matrix order should be evenly divisible',
print 'by number of processors'
return

n = globaln / np
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# send parameters and piece of matrix A to each VR, including
# ourselves
for w in self.workers:

A = [read_vector(f, globaln) for i in xrange(n)]
self.send(dest=w, tag='init', peers=self.workers, glob aln=globaln,

t=t, iters=iters, verbose=verbose)
self.send(dest=w, tag='A', A=A)

# read in vector b
b = read_vector(f, globaln)

# send a piece of vector b to each VR
for i, w in enumerate(self.workers):

self.send(dest=w, tag='b', b=b[i*n:(i+1)*n])

f.close()

stime = time.time()

# we are no different than anyone else now, let's
# do some work!
self.worker()

# receive piece of the answer from each worker
x = []
for w in self.workers:

p = self.recv(src=w, tag='done')
x += p.x
k = p.k

ftime = time.time()

print 'Solution found in %d iterations (%.2f s)' % (k, ftime- stime)
if verbose:

print_vector(x)

def print_vector(v):
for i in v:

print '%.2f' % i

def print_matrix(m):
for row in m:

for i in row:
print '%.2f ' % i,

print

def read_matrix(f, n):
return [read_vector(f, n) for i in xrange(n)]

def read_vector(f, n):
v = []

while len(v) < n:
line = ''
while not line:

line = f.readline().strip()

v += [float(x) for x in line.split()]

return v

def dot(x, y):
return reduce(operator.add, map(operator.mul, x, y))

def daxpy(alpha, x, y):
return map(lambda x,y: alpha * x + y, x, y)

def daypx(alpha, x, y):
return map(lambda x,y: alpha * y + x, x, y)

def matmul(A, x):
return [reduce(operator.add, map(operator.mul, row, x)) for row in A]

def dot0(x, y):
sum = 0.0

for i in xrange(len(x)):
sum += x[i] * y[i]

return sum

def daxpy0(alpha, x, y):
for i in xrange(len(x)):

x[i] = alpha * x[i] + y[i]

return x

def matmul0(A, x, y):
n = len(A)

for i in xrange(n):
y[i] = 0.0
for j in xrange(n):

y[i] += A[i][j] * x[j]

return y

if __name__ == '__main__':
main()

A.4 Remote Dictionary Extension [remdict.py]

from river.core.vr import VirtualResource

class DistributedDictionary (VirtualResource):
def __getitem__(self, key):

self.send(dest=self.parent, action='get', key=key)
p = self.recv(src=self.parent, key=key)
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return p.value

def __setitem__(self, key, value):
self.send(dest=self.parent, action='set', key=key, val ue=value)

def vr_init(self):
self.m = {} ; deployed = [] ; end = 0

VMs = self.discover()
if len(VMs) == 0:

print 'ERROR: Need at least one worker VM'
return False

VMs = self.allocate(VMs)

files = self.args[1:]
slice = len(files) / len(VMs) ; extras = len(files) % len(VMs )

for worker in VMs:
beg = end ; end = beg+slice
if extras:

end += 1 ; extras -= 1

deployed += self.deploy(VMs=[worker],
module=self.__module__, func='ddmain', args=files[beg :end])

self.peers = [vm['uuid'] for vm in deployed]
self.startfunc = self.serve

return True

def ddmain(self):
self.main()
self.send(dest=self.parent, action='done')

def serve(self):
done = 0
while done < len(self.peers):

p = self.recv()
if p.action == 'get':

v = self.m.get(p.key, 0)
self.send(dest=p.src, key=p.key, value=v)

elif p.action == 'set':
self.m[p.key] = p.value

elif p.action == 'done':
done += 1

for k, v in self.m.items():
print '%016s : %d' % (k, v)

A.5 Ping-pong Benchmark [pingpong.py]

import time, getopt
from river.core.vr import VirtualResource

from river.core.oneq import QueueError

class PingPong (VirtualResource):
def pong(self):

p = self.recv(src=self.parent, tag='init')
iters = p.iters
reply = p.reply

bytes = 0
stime = time.time()

i = 0
while i < iters:

p = self.recv()
bytes += len(p)
if reply:

bytes += self.send(dest=p.src, seq=p.seq, data=p.data)
i += 1

ftime = time.time()
t = ftime - stime

print '%d bytes processed' % (bytes)
print 'total: %.4f s, per iteration: %.4f s' % (t, t/iters)
print 'bandwidth: %.2f mbps' % (bytes/t/131072)

def main(self):
bufsize = 65536 ; iters = 4096 ; reply = True
recv = self.recv

try:
opts, args = getopt.getopt(self.args[1:], 'n:l:vh',

['ttcp', 'async', 'help'])
except getopt.GetoptError, e:

print 'ERROR:', e
return -1

for o, a in opts:
if o == '-n': iters = int(a)
elif o == '-l': bufsize = int(a)
elif o == '--ttcp': reply = False
elif o == '--async': recv = self.recv_nb
elif o == '-h' or o == '--help': return self.usage()

discovered = self.discover()
if len(discovered) < 1:

print 'ERROR: need one other VM'
return -1

vm = discovered[0:1]
deployed = self.deploy(self.allocate(vm), module=self. __module__,

func='pong')

if len(deployed) < 1:
print 'ERROR: deployment failed'
return -1
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vm = deployed.pop(0)
child = vm['uuid']
print 'Pinging', vm

self.send(dest=child, tag='init', iters=iters, reply=r eply)
buffer = 'R' * bufsize

bytes = 0 ; i = 0 ; j = 0

stime = time.time()

while i < iters:
bytes += self.send(dest=child, data=buffer, seq=i)
if reply:

try:
p = recv()
bytes += len(p)
j += 1

except QueueError:
pass

i += 1

if reply:
print '%d outstanding replies' % (iters - j)
while j < iters:

p = self.recv()
bytes += len(p)
j += 1

ftime = time.time()
t = ftime - stime
rtt = t / iters * 1000000

print '%d bytes processed' % (bytes)
print 'buffer size: %d, iterations: %d' % (bufsize, iters)
print 'total: %.4f s, per iteration: %.4f s' % (t, t/iters)
print 'bandwidth: %.2f mbps' % (bytes/t/131072)
print 'latency: %.5f us' % (rtt/2)

def usage(self):
print 'usage: %s [options]' % self.args[0]
print
print 'Options:'
print ' -h [--help] : this message'
print ' -n <n> : number of iterations to run'
print ' -l <n> : buffer size to use'
print ' --ttcp : emulate ttcp behavior (no replies)'
print ' --async : asynchronous replies'
return -1

A.6 Word Frequency Counter with Trickle [wfreq-

trickle.py]

import sys, time, glob, operator

def wordcount(files):
m = {}
for filename in files:

f = open(filename)
for l in f:

tokens = l.split()
for t in tokens:

m[t] = m.get(t, 0) + 1
f.close()

return m

if len(sys.argv) < 2:
print 'usage: %s <files>' % sys.argv[0]
sys.exit(1)

print 'WFreq starting...'

stime = time.time()

vrlist = connect()

files = glob.glob(sys.argv[1] + '*')
slices = {}
np = len(vrlist)
slice = len(files) / np
extras = len(files) % np
end = 0

for vr in vrlist:
beg = end
end = beg+slice
if extras:

end += 1
extras -= 1

slices[vr] = files[beg:end]

[vr.inject(wordcount) for vr in vrlist]

handles = [vr.fork(wordcount, slices[vr]) for vr in vrlist ]
rvlist = [h.join() for h in handles]

m = {}
for rm in rvlist:

for w in rm:
m[w] = m.get(w, 0) + rm.get(w, 0)

count = reduce(operator.add, m.values())
ftime = time.time()
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print 'global count %d' % count
print '%s seconds' % (ftime - stime)

A.7 Word Frequency Counter with IPython [wfreq-

ipy.py]

import sys, time, glob, operator
from IPython.kernel import client

def wordcount(files):
m = {}
for filename in files:

f = open(filename)
for l in f:

tokens = l.split()
for t in tokens:

m[t] = m.get(t, 0) + 1
f.close()

return m

if len(sys.argv) < 2:
print 'usage: %s <dir>' % sys.argv[0]
sys.exit(1)

print 'WFreq starting...'

stime = time.time()

mec = client.MultiEngineClient()

vrlist = mec.get_ids()
print 'total of %d clients' % len(vrlist)

files = glob.glob(sys.argv[1] + '*')
slices = {}
np = len(vrlist)
slice = len(files) / np
extras = len(files) % np
end = 0
for vr in vrlist:

beg = end
end = beg+slice
if extras:

end += 1
extras -= 1

slices[vr] = files[beg:end]

mec.push_function(dict(wordcount=wordcount))

[mec.push(dict(files=slices[vr]), targets=vr) for vr in vrlist]

mec.execute('freqs = wordcount(files)')
rvlist = mec.pull('freqs')

m = {}
for rm in rvlist:

for w in rm:
m[w] = m.get(w, 0) + rm.get(w, 0)

count = reduce(operator.add, m.values())
ftime = time.time()

print 'global count %d' % count
print '%s seconds' % (ftime - stime)
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Appendix B

River Core Source Code

This appendix presents the source code to the River run-timesystem.

B.1 Virtual Resource Base Class [vr.py]

import time, getpass, inspect, traceback, types
from threading import Thread, Condition
from river.core.oneq import OneQueue
from river.core.uuid import uuidgen
from river.core.options import *
from river.core.errors import *
from river.core.debug import DBG

class VirtualResource (Thread):
ANY = lambda x,y: True

def __init__(self, **kwargs):
Thread.__init__(self)
self.vm = kwargs['vm']
try:

self.uuid = kwargs['uuid']
except KeyError:

self.uuid = uuidgen()
try:

self.setName(kwargs['name'])
except KeyError:

pass

self.parent = kwargs.get('parent', None)
self.args = kwargs.get('args', [self.getName()])
self.label = kwargs.get('label')

self.startfunc = self.main

try:
if kwargs['func'] != 'run':

self.startfunc = getattr(self, kwargs['func'])
except KeyError:

pass

self.user = getpass.getuser()

self.q = OneQueue()

# by default we use the 'quick' queue get
self.recv = self.q.getnocb
self.recv_nb = self.q.get_nb
self.peek = self.q.peek

# attached LDE, if any
self.lde = None

# by default we are an application VR
self.sysvr = False

self.vm.register(self.uuid, self)

def send(self, **kwargs):
if kwargs.has_key('src'):

raise RiverError, 'src is a reserved keyword'

if not kwargs.has_key('dest'):
raise RiverError, 'dest keyword is required'

kwargs['src'] = self.uuid

return self.vm.send(**kwargs)

def mcast(self, **kwargs):
if kwargs.has_key('src'):

raise RiverError, 'src is a reserved keyword'

kwargs['src'] = self.uuid

return self.vm.mcast(**kwargs)

def regcb(self, **kwargs):
# if we set a callback, we have to use the 'slow' get
self.recv = self.q.get

return self.q.regcb(**kwargs)

def unregcb(self, **kwargs):
return self.q.unregcb(**kwargs)

def setVMattr(self, key, value):
return self.vm.setVMattr(key, value)

def discmatch(self, packet, attrs):
for a in attrs:
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try:
if isinstance(attrs[a], types.FunctionType) or \

isinstance(attrs[a], types.MethodType):
if not attrs[a](packet[a]):

return False
elif packet[a] != attrs[a]:

return False
except KeyError:

return False

return True

def discover(self, **kwargs):
tests = {}
for k in kwargs.keys():

if isinstance(kwargs[k], types.FunctionType) or \
isinstance(kwargs[k], types.MethodType):
tests[k] = kwargs[k]
kwargs[k] = '*'

if len(kwargs) == 0:
kwargs['status'] = 'available'
kwargs['user'] = self.user
kwargs['label'] = self.label

# when all VMs are returned, not everyone may be available
# for deployment (busy, wrong user, etc.)
self.discVMs = {}

kwargs['type'] = '__control__'
kwargs['command'] = 'discover'

self.mcast(**kwargs)

time.sleep(DISCWAIT)

while self.peek(type='__control__', command='discover '):
p = self.recv(type='__control__', command='discover')
if self.discmatch(p.attributes, tests):

self.discVMs[p.src] = VMdesc(p.attributes)

return self.discVMs.values()

def allocate(self, VMs):
# we allocate where we are told. it is up to the user to
# verify that all the nodes requested were indeed allocated
self.allocVMs = {}

for vm in VMs:
self.send(type='__control__', command='allocate', use r=self.user,

label=self.label, dest=vm['cvr'])

n = len(VMs)
while n:

p = self.recv(type='__control__', command='allocate')

vmdesc = self.discVMs[p.src]
if p.result == 'success':

vmdesc['uuid'] = p.newuuid
self.allocVMs[p.src] = vmdesc

else:
print 'allocate failed for', vmdesc['host'], p.result

n -= 1

if len(VMs) != len(self.allocVMs):
raise RiverError, 'Unable to allocate requested VMs'

return self.allocVMs.values()

def deallocate(self, VMs):
for vm in VMs:

self.send(dest=vm['cvr'], type='__control__', command ='deallocate')

def deploy(self, VMs, module, func='run', args=[]):
self.depVMs = {}

# get the source code for the module
mod = __import__(module)
fname = mod.__file__
if fname.endswith('.pyc') or fname.endswith('.pyo'):

fname = fname[:-1]
f = open(fname)
src = f.read()
f.close()

if not args:
args = self.args

for vm in VMs:
self.send(type='__control__', command='deploy', modul e=module,

func=func, args=args, source=src, user=self.user,
lde=self.lde, dest=vm['cvr'])

n = len(VMs)
while n:

p = self.recv(type='__control__', command='deploy')

vmdesc = self.allocVMs[p.src]
if p.result == 'success':

self.depVMs[p.src] = vmdesc
else:

print 'deploy failed for', vmdesc['host'], p.result

n -= 1

if len(VMs) != len(self.depVMs):
raise RiverError, 'Unable to deploy to requested VMs'

return self.depVMs.values()

def run(self, *args):
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name = self.getName()

DBG('general', '=== %s STARTING ===', name)

try:
self.startfunc(*args)

except Exception, e:
traceback.print_exc()
DBG('general', '=== %s FAILED ===', name)

else:
DBG('general', '=== %s COMPLETED ===', name)

try:
from river.extensions.remote import RemoteObject
# delete remote objects, if any
for x in dir(self):

if isinstance(getattr(self, x), RemoteObject):
del self.__dict__[x]

except ImportError, e:
print 'WARNING: RAI extensions not available:', e
print ' NOT cleaning up remote objects'

self.send(dest=self.vm.control.uuid, type='__control __',
command='vr_exit')

def main(self):
print '[main] Override this method in subclass'

class VMdesc(object):
def __init__(self, attributes):

self.attrs = attributes

def __getitem__(self, key):
return self.attrs[key]

def __setitem__(self, key, value):
self.attrs[key] = value

def __repr__(self):
return '%s on %s' % (self.attrs['cvr'], self.attrs['host' ])

def has_key(self, key):
return self.attrs.has_key(key)

def keys(self):
return self.attrs.keys()

def values(self):
return self.attrs.values()

def items(self):
return self.attrs.items()

def getVRclasses(module):
rv = []
for name in dir(module):

ref = getattr(module, name)
try:

if ref != VirtualResource and issubclass(ref, VirtualReso urce):
rv.append(ref)

except TypeError:
pass

rv.sort(key=(lambda ref: (inspect.getmro(ref)).__len_ _()), reverse=True)
return rv

B.2 River Virtual Machine [riverVM.py]

import sys, struct, os, time, operator
from copy import deepcopy
from threading import Thread, Lock, Condition
from select import select
from socket import *
import river.core.getmyip as getmyip
from river.core.packet import Packet, encode, decode
from river.core.oneq import OneQueue
from river.core.pool import ConnPool
from river.core.kbthread import KeyboardThread
from river.core.errors import *
from river.core.options import *
from river.core.debug import DBG
import profile

class InputThread(Thread):
def __init__(self, vm):

Thread.__init__(self)
self.vm = vm

def runp(self):
globals()['profileme'] = self.run1
profile.runctx('profileme()', globals(), locals())

def run(self):
while 1:

self.vm.netread()

class ARPEntry(object):
def __init__(self, uuid, addr):

self.uuid = uuid
self.addr = addr
self.tstamp = time.time()

class RiverVM(object):
def __init__(self, **kwargs):

DBG('vm', 'Initializing River VM...')

# ARP-style cache of uuid->addr
self.arpcache = {}

# list of VRs on this VM
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self.VRs = {}

# control VR
self.control = None

# figure out our IP
# note that KeyError is raised if iface is None, which
# forces IP lookup via 'broadcast' method
try:

if kwargs.get('iface') == None:
raise KeyError

from osdep import getifaddrs
iflist = getifaddrs.getifaddrs()

for iface,ip in iflist:
if iface == kwargs['iface']:

self.myip = ip
break

else:
raise RiverError, 'invalid interface %s' % kwargs['iface' ]

except ImportError:
raise RiverError, 'your system does not support interface s election'

except KeyError:
self.myip = getmyip.get_ip_bcast()

DBG('vm', 'I believe my IP is %s', self.myip)

# create a multicast socket
self.usock = socket(AF_INET, SOCK_DGRAM)
try:

self.usock.setsockopt(SOL_SOCKET, SO_REUSEPORT, 1)
except NameError:

self.usock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

# bind to our port
self.usock.bind(('', udp_port))
# join our multicast group on the specified interface
mreq = struct.pack('4s4s', inet_aton(mcast_addr), inet_ aton(self.myip))
self.usock.setsockopt(IPPROTO_IP, IP_ADD_MEMBERSHIP, mreq)
# use the specified interface for outgoing mcast packets
self.usock.setsockopt(IPPROTO_IP, IP_MULTICAST_IF, in et_aton(self.myip))
# set TTL for mcast packets
self.usock.setsockopt(IPPROTO_IP, IP_MULTICAST_TTL, 3 2)

# create a socket for IPC
self.ipcsock = socket(AF_INET, SOCK_DGRAM)

global ipc_addr
ip,port = ipc_addr
i = port
while i < (port + MAXVMS):

try:
self.ipcsock.bind((ip, i))
break

except error:
i += 1

else:
raise RiverError, 'Unable to bind port for IPC; too many VMs? '

DBG('vm', ' IPC socket bound to port %d', i)
ipc_addr = (ip,i)

# create a TCP listening socket
self.lsock = socket(AF_INET, SOCK_STREAM)
self.lsock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

self.port = tcp_port
while self.port < (tcp_port + MAXVMS):

try:
self.lsock.bind(('', self.port))
break

except error:
self.port += 1

else:
raise RiverError, 'Unable to bind port for TCP; too many VMs? '

DBG('vm', ' TCP socket bound to port %d', self.port)
self.lsock.listen(4)

# connection pool
self.pool = ConnPool(MAXCONNCACHE)
self.pool.sethello(encode(type='__hello__',

srcaddr=(self.myip, self.port)))

# wrap mcast and ipc sockets inside 'net connections'
self.pool[(mcast_addr, udp_port)] = self.usock
self.mcastnc = self.pool[(mcast_addr, udp_port)]
self.mcastnc.expire(None)

self.pool[ipc_addr] = self.ipcsock
self.ipc = self.pool[ipc_addr]
self.ipc.expire(None)

self.spr,self.spw = os.pipe()
self.sendq = []

# create network input thread
self.nt = InputThread(self)
self.nt.setName('Network Input Thread')
self.nt.start()

# create keyboard input thread (will be started by ControlVR )
self.kt = None
daemon = kwargs.get('daemon')
if (sys.platform != 'win32') and not daemon:

self.kt = KeyboardThread()
self.kt.setName('Keyboard Input Thread')

# pre-encode a 'tickle' message
self.tickle = encode(type='__ipc__', command='tickle')
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def netread(self):
rset = self.pool.values()
rset.append(self.lsock)

rset,wset,eset = select(rset, [], [])

if self.lsock in rset:
s,addr = self.lsock.accept()
if __debug__:

DBG('network', '[RVM:netread] new connection from %s', ad dr)
self.pool[addr] = s
rset.remove(self.lsock)

if len(rset) == 0: return

for nc in rset:
try:

if __debug__:
DBG('network', '[RVM:netread] reading %s', nc)

packets = nc.recv()

except ConnError:
if __debug__:

DBG('network', '[RVM:netread] dropped %s', nc)
del self.pool[nc.addr]
continue

for p in packets:
if __debug__:

DBG('packet', 'recv %s', p)

if nc == self.pool[ipc_addr]:
self.ipccmd(p)
continue

if self.arpcheck(p):
continue

if self.hellocheck(p):
if __debug__:

DBG('network', '[RVM:netread] remap %s to %s',
nc.addr, p.srcaddr)

self.pool.remap(nc.addr, p.srcaddr)
continue

# add packet to the appropriate queue
try:

vr = self.VRs[p.dest]
vr.q.put(p)
if __debug__:

DBG('network', '[RVM:netread] for %s', p.dest)

# no destination specified
except AttributeError:

if self.control:

self.control.q.put(p)

# destination is not our VR
except KeyError:

pass

def register(self, uuid, vr):
DBG('vm', '[RVM:register] new VR %s', uuid)
self.VRs[uuid] = vr

def setcontrol(self, uuid):
if self.control is None:

DBG('vm', '[RVM:setcontrol] %s', uuid)
self.control = self.VRs[uuid]

def unregister(self, uuid):
DBG('vm', '[RVM:unregister] deleting VR %s', uuid)
del self.VRs[uuid]

def hasVR(self, uuid):
return self.VRs.has_key(uuid)

def VRcount(self, all=False):
if all:

return len(self.VRs)
x = reduce(operator.add, [int(not vr.sysvr) for vr in self. VRs.values()])
return x

def setVMattr(self, key, value):
return self.control.setattr(key, value)

def arpcheck(self, p):
type = p.get('type', None)
if type != '__arp__':

return False

if p.command == 'request':
DBG('arp', '[RVM:arp] request %s', p.target)

# one of ours?
if self.hasVR(p.target):

self.mcast(type='__arp__', command='reply', src=p.tar get,
srcaddr=(self.myip, self.port))

elif p.command == 'reply':
DBG('arp', '[RVM:arp] reply %s -> %s', p.src, p.srcaddr)
self.arpcache[p.src] = ARPEntry(p.src, p.srcaddr)

return True

def arpdup(self, uuid1, uuid2):
self.arpcache[uuid2] = self.arpcache[uuid1]

def hellocheck(self, p):
type = p.get('type', None)
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if type != '__hello__':
return False

return True

def ipccmd(self, p):
command = p.get('command', None)

if command == 'quit':
DBG('vm', '[RVM:netread] exit')
sys.exit(0)

elif command == 'tickle':
DBG('network', '[RVM:netread] tee hee, that tickles')

def send(self, **kwargs):
uuid = kwargs['dest']

# are we sending to a local VR?
# as an optimization, just add it to the right queue
if self.hasVR(uuid):

if __debug__:
DBG('network', '[RVM:send] local optimized')

p = Packet(deepcopy(kwargs))
vr = self.VRs[uuid]
vr.q.put(p)
return len(p)

addr = self.resolve(uuid)
if not addr:

raise RiverError, 'Unable to resolve %s' % uuid

nc = self.pool[addr]

# if this is a new connection, tickle network thread
# so that it can be added to select() set
if nc.new:

if __debug__:
DBG('network', '[RVM:send] tickle for %s', addr)

self.ipc.send(self.tickle)

if __debug__:
DBG('packet', 'send %s', kwargs)

return nc.send(encode(**kwargs))

def resolve(self, uuid):
try:

entry = self.arpcache[uuid]
if time.time() < entry.tstamp + ARPTIMEOUT:

return entry.addr
except KeyError:

pass

if __debug__:
DBG('arp', '[RVM:resolve] %s not found in cache', uuid)

# block until resolved (with timeout?)
i = 5
stime = time.time()
while not self.arpcache.has_key(uuid) and i:

DBG('arp', '[RVM:resolve] ARP request broadcast')
self.mcast(type='__arp__', command='request', target= uuid)
DBG('arp', '[RVM:resolve] waiting for reply')

time.sleep(ARPSLEEP)
i -= 1

if not i:
DBG('arp', '[RVM:resolve] timed out')
return None

if __debug__:
DBG('arp', '[RVM:resolve] resolved to %s', self.arpcache [uuid].addr)

return self.arpcache[uuid].addr

def mcast(self, **kwargs):
DBG('packet', 'mcast %s', kwargs)
self.mcastnc.send(encode(**kwargs))

def killVR(self):
p = Packet()
p.type = '__control__'
p.command = 'reset'
p.src = 'River VM'

for vr in self.VRs.values():
if vr is not self.control:

vr.q.put(p)

def close(self):
# terminate network input thread
x = encode(type='__ipc__', command='quit')
self.ipc.send(x)

self.nt.join()

# terminate keyboard thread
if self.kt is not None:

self.kt.close()
self.kt.join()

self.lsock.close()

for s in self.pool.values():
s.close()

p = Packet()
p.type = '__control__'
p.command = 'quit'
p.src = 'River VM'
for vr in self.VRs.values():
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vr.q.put(p)

DBG('vm', '[RVM:close] River ran dry')

B.3 Control VR [control.py]

import os, sys, platform, getpass, new, inspect
from river.core.uuid import uuidgen
from river.core.vr import *
from river.core.console import *
from river.core.options import *
from river.core.errors import *
from river.core.debug import DBG

# recipe 18.2 from the Python Cookbook
def makemodule(name, source):

module = new.module(name)
sys.modules[name] = module
exec source in module.__dict__
return module

class ControlVR (VirtualResource):
def __init__(self, **kwargs):

VirtualResource.__init__(self, **kwargs)
self.args[0] = 'ControlVR'

self._vmstate = 'available'

self.allocations = {}

self.restrict = kwargs.get('restrict', True)

try:
self.console = kwargs['console']

# add an RAI server for the console
from river.extensions.rai import RAIServer
self.rai = RAIServer(self.console, self)

except KeyError:
self.rai = None

except ImportError, e:
print 'WARNING: RAI extensions not available:', e
print ' Console will NOT be remotely available'
self.rai = None

self.console_out = Console_Out(self, '-')
self.console_in = Console_In(None)

if self.vm.kt is not None:
self.vm.kt.configure(self, self.console_in.saved_std in)
self.vm.kt.start()

self.user = getpass.getuser()

# we are a system VR
self.sysvr = True

# get python version (determined in base launcher)
self.python_version = kwargs.get('python_version', 'Un known')

# fill in attributes that we'll send back on discover
self.attrs = {

'version' : current_version,
'cpu' : 1,
'arch' : platform.machine(),
'mem' : 1,
'os' : platform.system(),
'pyver' : platform.python_version(),
'pyver' : self.python_version,
'host' : platform.node(),
'cvr' : self.uuid,
'status' : self.status,
'user' : self.user,
'label' : self.label,
'userVRs' : self.vm.VRcount(),
'allVRs' : self.vm.VRcount(True),
'caps' : 'con '

}

# keep track of running VRs
self.VRs = {}

# load control extensions
DBG('control', '[CON:init] loading extensions')
self.extensions = []
globals()['control_extension'] = self.register_extens ion
globals()['send'] = self.send
rvmmod = __import__('river.core.riverVM')
extdir,_ = os.path.split(rvmmod.__file__)
extdir += '/extensions/control'
try:

for f in os.listdir(extdir):
if not f.endswith('.py'): continue
execfile('%s/%s' % (extdir, f), globals())
DBG('control', '[CON:init] loaded extension %s', f)

except OSError, e:
pass

def register_extension(self, types, commands, func):
self.extensions.append((types,commands,func))

def attributes(self):
self.attrs['status'] = self.status
self.attrs['userVRs'] = self.vm.VRcount()
self.attrs['allVRs'] = self.vm.VRcount(True)

return self.attrs

def setattr(self, key, value):
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self.attrs[key] = value

if key not in self.attrs['caps']:
self.attrs['caps'] += '%s ' % key

def setstatus(self, status):
self._status = status

def getstatus(self):
count = self.vm.VRcount()
if count >= MAXUSERVRS:

self._status = 'busy'
else:

self._status = 'available'
return self._status

def discmatch(self, p):
myattrs = self.attributes()
pattrs = p._m_.copy()

del pattrs['type']
del pattrs['command']
del pattrs['src']

for k in pattrs:
# special case: match any user in unrestricted mode
if k == 'user' and not self.restrict:

continue

try:
x = pattrs[k]
y = myattrs[k]

except KeyError:
DBG('control', '[CON:match] attribute not found: %s', k)
return False

if x != y and x != '*':
return False

return True

def discover(self, p):
# if request is from ourselves, ignore it
if self.vm.hasVR(p.src):

DBG('control', '[CON:discover] ignoring from self')
return

if not self.discmatch(p):
DBG('control', '[CON:discover] matching failed')
return

DBG('control', '[CON:discover] replying')

try:
self.send(type='__control__', command='discover',

attributes=self.attributes(), dest=p.src)

except ConnError:
print p
print 'ERROR: Unable to reply to', p.src
print ' Perhaps blocked by a firewall?'

def allocate(self, p):
# for allocate to succeed the user must match or
# we must be running in unrestricted mode
if p.get('user') == self.user or not self.restrict:

newuuid = uuidgen()
self.allocations[p.src] = newuuid
result = 'success'

else:
newuuid = None
result = 'ERROR: not available'

DBG('control', '[CON:allocate] %s', result)
self.send(type='__control__', command='allocate', res ult=result,

newuuid=newuuid, dest=p.src)

def deallocate(self, p):
self.allocations.pop(p.src, None)

def deploy(self, p):
# make sure a VR has already been allocated
allocated = False

try:
newuuid = self.allocations[p.src]
del self.allocations[p.src]
allocated = True

module = self.rimport(p)
classes = getVRclasses(module)
klass = classes[0]

except (ImportError, IndexError, KeyError, RiverError), e:
# possible errors: not allocated, no such module,
# no VR subclasses in module
# or remote import failed
result = 'ERROR: %s' % e

if not allocated:
result = 'ERROR: not allocated'

DBG('control', '[CON:deploy] %s', result)
self.send(type='__control__', command='deploy', resul t=result,

dest=p.src)

return

if len(classes) > 1:
DBG('general', 'WARNING: extra VR subclasses in %s', p.mod ule)
DBG('general', classes)
DBG('general', ' using %s', str(klass))
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DBG('control', '[CON:deploy] creating new VR %s', newuuid )

obj = klass(vm=self.vm, name=p.module, uuid=newuuid, fun c=p.func,
args=p.args, parent=p.src)

self.console_in.setmvr(obj)

obj.lde = p.get('lde')
obj.start()

self.send(type='__control__', command='deploy', resul t='success',
dest=p.src)

self.VRs[p.module] = obj

def rimport(self, p):
module = None

try:
DBG('control', '[CON:rimport] trying included source')
if p.source != None:

return makemodule(p.module, p.source)

from river.extensions.remote import RemoteVR

DBG('control', '[CON:rimport] trying LDE for %s', p.modul e)
if p.get('lde') == None:

raise RAIError, 'No directory export'

lde = RemoteVR(p.lde, self)
f = lde.open(p.module + '.py')
code = f.read()
f.close()

return makemodule(p.module, code)

except (RAIError, ImportError), e:
DBG('control', '[CON:rimport] %s', e)
DBG('control', '[CON:rimport] fallback to local')

try:
return __import__(p.module)

except ImportError:
DBG('control', '[CON:rimport] local import failed')

raise RiverError, 'unable to import module %s' % p.module

def vr_exit(self, p):
# exit a VR on this VM
self.vm.unregister(p.src)
self.cleanup()

def cleanup(self):
tbd = set()

for name in self.VRs.keys():
vr = self.VRs[name]

DBG('control', '[CON:cleanup] %s exited, joining', name)
del self.VRs[name]
vr.join()

klasses = inspect.getmro(vr.__class__)
for k in klasses:

if k.__name__ is 'VirtualResource':
break

tbd.add(k.__module__)

for mod in tbd:
DBG('control', '[CON:cleanup] deleting module %s', mod)
try:

del sys.modules[mod]
except KeyError:

pass

def process_console(self, p):
if p.subcommand == 'setout':

self.console_out.setstream(p.src)
if p.subcommand == 'unsetout':

self.console_out.unsetstream(p.src)
if p.subcommand == 'write':

self.console_out.write_out(p.data)
if p.subcommand == 'read':

self.console_in.read_in(p.data, self)

def extmatch(self, p):
for (types, commands, func) in self.extensions:

if p.type in types and p.command in commands:
func(p)
return True

def main(self):
DBG('control', 'Control VR starting')
DBG('control', ' my UUID: %s', self.uuid)
DBG('control', ' args: %s', self.args)
DBG('control', ' attrs: %s', self.attributes())

while 1:
p = self.recv()

type = p.get('type')

if type == '__rai__' and self.rai is not None:
self.rai.dispatch(p)
continue

elif type != '__control__':
DBG('control', '[CON:main] unknown type %s', type)
continue

DBG('control', '[CON:main] command: %s', p.command)
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if p.command == 'vr_exit':
self.vr_exit(p)

elif p.command == 'discover':
self.discover(p)

elif p.command == 'allocate':
self.allocate(p)

elif p.command == 'deallocate':
self.deallocate(p)

elif p.command == 'deploy':
self.deploy(p)

elif p.command == 'quit':
DBG('control', '[CON:main] terminated')
break

elif p.command == 'reset':
user = p.get('user')
if user == self.user:

self.vm.killVR()
else:

DBG('control', '[CON:main] reset from wrong user: %s', use r)
elif p.command == 'console':

self.process_console(p)
elif self.extmatch(p):

pass
else:

DBG('control', '[CON:main] unknown command %s', p.comman d)

status = property(getstatus, setstatus)

B.4 Super Flexible Packet [packet.py]

import operator, struct, sys, cPickle as pickle
from river.core.options import current_version
from river.core.debug import DBG
from river.core.errors import SFMError

hdrfmt = '!%dsi' % len(current_version)

class Packet(object):
def __init__(self, m={}, size=0):

self.__dict__['_m_'] = m
self.__dict__['_size_'] = size

self.__dict__['items'] = m.items
self.__dict__['iteritems'] = m.iteritems
self.__dict__['keys'] = m.keys
self.__dict__['iterkeys'] = m.iterkeys
self.__dict__['values'] = m.values
self.__dict__['itervalues'] = m.itervalues
self.__dict__['has_key'] = m.has_key
self.__dict__['get'] = m.get

def __getattr__(self, key):
try:

return self._m_[key]
except KeyError:

raise AttributeError, 'Packet has no attribute: %s' % key

def __setattr__(self, key, value):
return self._m_.__setitem__(key, value)

def __getitem__(self, key):
return self._m_.__getitem__(key)

def __setitem__(self, key, value):
return self._m_.__setitem__(key, value)

def __delitem__(self, key):
return self._m_.__delitem__(key)

def __str__(self):
return 'Packet: ' + str(self._m_)

def __len__(self):
return self._size_

def encode(**kwargs):
payload = pickle.dumps(kwargs, pickle.HIGHEST_PROTOCOL )
hdr = struct.pack(hdrfmt, current_version, len(payload) )
return hdr+payload

def decode(data):
left = len(data)
hdrlen = struct.calcsize(hdrfmt)

# incomplete header
if left < hdrlen:

return None,data

version,size = struct.unpack(hdrfmt, data[:hdrlen])

if version != current_version:
DBG('packet', '[decode] discarding wrong version: %s',

version)
raise SFMError, 'Invalid input'

# incomplete packet
if left < (hdrlen + size):

return None,data

off = hdrlen
m = pickle.loads(data[off:off+size])
p = Packet(m, size=hdrlen+size)
off += size

return p, data[off:]
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B.5 SFM Queue [oneq.py]

import time, types
from threading import Condition
from river.core.packet import Packet, encode, decode
from river.core.options import *
from river.core.errors import *
from river.core.debug import DBG

class OneQueue(object):
def __init__(self):

self.q = []
self.callbacks = {}
self.cv = Condition()
self.waits = 0
self.calls = 0

def match(self, packet, attrs):
if packet.get('src') == 'River VM':

return True

for a in attrs:
try:

pv = packet[a]
av = attrs[a]

except KeyError:
return False

if isinstance(av, types.FunctionType) or \
isinstance(av, types.MethodType):

if not av(pv):
return False

elif pv != av:
return False

return True

def checkcb(self, packet):
for attrs in self.callbacks:

func = self.callbacks[attrs]
if self.match(packet, attrs):

self.callstack.append((packet, func))
return True

return False

def regcb(self, **kwargs):
try:

func = kwargs['callback']
del kwargs['callback']
self.callbacks[kwargs] = func

except KeyError:
pass

def unregcb(self, **kwargs):
try:

func = kwargs['callback']
del kwargs['callback']

del self.callbacks[kwargs]
except KeyError:

pass

def put(self, packet):
self.cv.acquire()
self.q.append(packet)
self.cv.notify()
self.cv.release()

DBG('queue', '%s', packet)

if __debug__:
DBG('queue', '[Q:put] new total: %d packets', len(self.q) )

def get(self, **kwargs):
self.cv.acquire()

rv = None
while rv is None:

self.callstack = []
for p in self.q:

self.checkcb(p)

for packet, func in self.callstack:
self.q.remove(packet)
func(packet)

for p in self.q:
if self.match(p, kwargs):

rv = p
break

# if we got nothing, block until something comes in
if rv is None:

self.cv.wait()

self.q.remove(rv)
self.cv.release()

return rv

def getnocb(self, **kwargs):
self.calls += 1
self.cv.acquire()

rv = None
while rv is None:

for p in self.q:
if self.match(p, kwargs):

rv = p
break

if rv is None:
self.waits += 1
self.cv.wait()
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self.q.remove(rv)
self.cv.release()

return rv

def peek(self, **kwargs):
for p in self.q:

if self.match(p, kwargs):
return True

return False

def get_nb(self, **kwargs):
self.cv.acquire()

rv = None
for p in self.q:

if self.match(p, kwargs):
rv = p
self.q.remove(p)
break

self.cv.release()

if rv:
return rv

raise QueueError, 'would block'

B.6 Network Connection [nc.py]

import sys, time
from socket import *
from socket import _socketobject
from river.core.packet import Packet, encode, decode
from river.core.options import *
from river.core.errors import *
from river.core.debug import DBG

class NetConn(object):
def __init__(self, addr):

self.tstamp = time.time()
self.buffer = ''
self.scount = 0
self.rcount = 0

if isinstance(addr, _socketobject):
self.sock = addr
self.fileno = self.sock.fileno
# ghetto way of determining protocol
try:

self.addr = self.sock.getpeername()
self.prot = 'TCP'

except error:

# caller (pool) will fill in self.addr
self.addr = None
self.prot = 'UDP'
self.send = self.usend
self.recv = self.urecv

return

s = socket(AF_INET, SOCK_STREAM)
t = s.gettimeout()
s.settimeout(1.0)
n = 5
connected = False
DBG('network', '[NC:init] connect to %s', addr)
while n:

DBG('network', '[NC:init] attempt %d', n)
n -= 1
try:

s.connect(addr)
connected = True
break

except error, strerror:
if isinstance(strerror, tuple):

errno,strerror = strerror

DBG('network', '[NC:init] ERROR: %s %s', addr, strerror)

if not connected:
raise ConnError, 'Unable to connect'

self.prot = 'TCP'
s.settimeout(t)
self.addr = s.getpeername()
self.sock = s
self.fileno = s.fileno

def getpeername(self):
return self.addr

def recv(self):
try:

data = self.sock.recv(NCBUFSIZE)
except error, (errno, strerror):

raise ConnError, strerror

if not data:
raise ConnError, 'Dropped connection'

self.tstamp = time.time()

return self.process(data)

def urecv(self):
data,addr = self.sock.recvfrom(NCBUFSIZE)

return self.process(data)
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def process(self, data):
packets = []
rv = len(data)
self.rcount += rv

if __debug__:
DBG('network', '[NC:process] %d bytes from %s', rv, self.a ddr)

self.buffer += data

try:
while self.buffer:

p,self.buffer = decode(self.buffer)
if p is None: break
packets.append(p)

except SFMError:
DBG('network', '[NC:recv] SFM decode error; discarded')

return packets

def send(self, data):
self.tstamp = time.time()

if __debug__:
DBG('network', '[NC:send] %d bytes to %s', len(data), self .addr)

n = self.sock.send(data)
self.scount += n
return n

def usend(self, data):
if __debug__:

DBG('network', '[NC:send] %d bytes to %s', len(data), self .addr)
n = self.sock.sendto(data, self.addr)
self.scount += n
return n

def close(self):
DBG('network', '[NC:close] %s', self.addr)
DBG('network', ' %d bytes sent, %d bytes received',

self.scount, self.rcount)
self.sock.close()

def expire(self, when):
if when is None:

self.tstamp = sys.maxint
else:

self.tstamp = time.time() + when

def __str__(self):
return '%s connection to %s' % (self.prot, self.addr)

B.7 Connection Pool [pool.py]

from threading import Lock
from river.core.nc import NetConn
from river.core.errors import *
from river.core.debug import DBG

# maintain a pool of [open] connections. whenever the pool is full,
# expunge least recently used

class ConnPool(object):
def __init__(self, maxsize):

DBG('network', '[POOL:init] max: %d', maxsize)
self.max = maxsize

self.pool = {}
self.lock = Lock()

self.hello = None

def __getitem__(self, addr):
try:

nc = self.pool[addr]
# mark this as an existing connection
nc.new = False

except KeyError:
self.check()
nc = NetConn(addr)
if self.hello: nc.send(self.hello)
self.lock.acquire()
self.pool[addr] = nc
self.lock.release()
# mark this as a new connection
nc.new = True

return nc

def __setitem__(self, addr, sock):
self.check()
self.lock.acquire()
nc = NetConn(sock)
if nc.addr is None:

nc.addr = addr
self.pool[addr] = nc
self.lock.release()

def __delitem__(self, addr):
DBG('network', '[POOL:del] %s', addr)

try:
nc = self.pool[addr]
nc.close()

del self.pool[addr]

except KeyError:
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raise RiverError, 'Connection cache inconsistency'

def has_key(self, key):
return self.pool.has_key(key)

def values(self):
return self.pool.values()

def close(self, addr):
nc = self.pool[addr]
nc.close()

del self.pool[addr]

def check(self):
if len(self.pool) >= self.max:

DBG('network', '[POOL:check] full, expunging LRU')
self.expunge()

def expunge(self):
self.lock.acquire()
x = self.pool.items()
x.sort(sortfun)

addr,nc = x[0]
DBG('network', '[POOL:expunge] expunging %s', addr)
nc.close()
del self.pool[addr]
self.lock.release()

def remap(self, old, new):
self.lock.acquire()
nc = self.pool[old]
del self.pool[old]
nc.addr = new
self.pool[new] = nc
self.lock.release()

def sethello(self, packet):
self.hello = packet

def sortfun(tup1, tup2):
addr1,nc1 = tup1
addr2,nc2 = tup2

return int(nc2.tstamp - nc1.tstamp)

135



Appendix C

River Extensions Source Code

This appendix presents the source code to the River Extensions: RAI

and Trickle.

C.1 RAI Client Code [remote.py]

import inspect, types
from river.core.errors import *
from river.core.debug import DBG

def curry(func, fname, *args0, **kwargs0):
def callit(*args, **kwargs):

kwargs.update(kwargs0)
return func(fname, *(args0+args), **kwargs)

return callit

class RemoteObject(object):
def __init__(self, name, id, server, parent, type = 'object '):

self.name = name
self.id = id
self.server = server
self.type = type

self.orphan = True
self.parent = None
self.send = None
self.recv = None

self.bind(parent)

def bind(self, parent):
DBG('rai', '[Remote:bind] %s to %s', self, parent)

self.parent = parent
self.send = parent.send
self.recv = parent.recv
self.orphan = False

def __getnewargs__(self):
return (self.name, self.id, self.server, None)

def __getstate__(self):
DBG('rai', '[Remote:getstate] making %s an orphan', self)
d = self.__dict__.copy()
d['orphan'] = True
d['parent'] = None
d['send'] = None
d['recv'] = None

return d

def __setstate__(self, d):
self.__dict__.update(d)
DBG('rai', '[Remote:setstate] orphan object %s', self)

def __del__(self):
# orphans, functions, fork handles should not be deleted
if self.orphan or self.id is None: return
if self.type == 'callable': return
if isinstance(self, ForkHandle): return

DBG('rai', '[Remote:del] deleting remote object %s', self .name)
self.shalf(command='delete')

def __str__(self):
return '<%s (%s) on %s>' % (self.name, self.id, self.parent )

def __getattr__(self, name):
DBG('rai', '[Remote:getattr] lookup %s in %s', name, self. name)

if self.orphan:
DBG('rai', '[Remote:getattr] orphan object %s', self)

# try to find a parent VR for this object
frame = inspect.currentframe()
# it is possible that the caller is one of our member
# functions, so we may need to look deeper
while frame.f_globals['__name__'] == 'river.extensions .remote':

frame = frame.f_back
parent = frame.f_locals['self']

DBG('rai', '[Remote:getattr] new RemoteVR, parent %s', pa rent)
r = RemoteVR(self.server, parent)
self.bind(r)

return self.rai(command='getattr', name=name)

def __call__(self, *args, **kwargs):
DBG('rai', '[Remote:__call__] calling %s %s in %s', self.n ame,
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str(args), self.id)
return self.rai(command='call', name=self.name, args=a rgs, kwargs=kwargs)

def fork(self, fname, *args, **kwargs):
if not isinstance(fname, str):

fname = fname.__name__

DBG('rai', '[Remote:fork] forking %s %s in %s', fname, str( args),
self.name)

self.shalf(command='call', name=fname, args=args, kwar gs=kwargs)

return ForkHandle(fname, self.id, self.server, self)

# this generic function does all the real work
def rai(self, **kwargs):

self.shalf(**kwargs)
return self.rhalf(command=kwargs['command'])

def shalf(self, **kwargs):
kwargs['type'] = '__rai__'
kwargs['dest'] = self.server
kwargs['id'] = self.id

self.send(**kwargs)

def rhalf(self, **kwargs):
kwargs['type'] = '__rai__'
kwargs['src'] = self.server

p = self.recv(**kwargs)

return self.processrv(p)

def processrv(self, p):
if p.result == 'object':

DBG('rai', '[Remote:processrv] %s is an object', p.name)
return RemoteObject(p.name, p.id, p.src, self.getparent ())

elif p.result == 'function':
DBG('rai', '[Remote:processrv] %s is a function', p.name)
return RemoteObject(p.name, p.id, p.src, self.getparent (),

type = 'callable')

elif p.result == 'success':
return p.rv

elif p.result == 'StopIteration':
raise StopIteration

raise RAIError, 'RAI failed: %s' % p.result

def getparent(self):
if isinstance(self, RemoteVR):

return self
else:

return self.parent

class RemoteVR(RemoteObject):
def __init__(self, server, parent):

RemoteObject.__init__(self, 'RemoteVR', None, server, p arent)

def __str__(self):
return '<RemoteVR %s>' % self.server

def inject(self, obj):
frame = inspect.currentframe().f_back
name = None

# travel up the call stack in case we were called by the
# global inject() function
while frame.f_locals.get('self') is self.parent:

frame = frame.f_back

# find the appropriate object to inject
for k in frame.f_locals:

if frame.f_locals[k] is obj:
name = k
break

DBG('rai', '[RemoveVR:inject] injecting %s %s', name, typ e(obj))

# function
if inspect.isfunction(obj):

injtype = 'function'
src = inspect.getsource(obj)
filename = inspect.getsourcefile(obj)

# class
elif inspect.isclass(obj):

injtype = 'class'
# trickle hack: look inside parent to determine the
# correct source file, since inspect is stupid
try:

DBG('rai', '[RemoteVR:inject] trying %s', self.parent.g etName())
filename = self.parent.getName()
src = get_class_source(name, filename)

except:
raise RAIError, 'Unable to find code to inject'

filename = inspect.getsourcefile(obj)

# data
else:

injtype = 'data'
src = obj
filename = '<data>'

DBG('rai', '[RemoteVR:inject] %s from %s', name, filename )

self.rai(command='inject', name=name, source=src, injt ype=injtype)
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class ForkHandle(RemoteObject):
def __str__(self):

return '<ForkHandle to %s in %s>' % (self.name, self.parent )

def join(self):
return self.rhalf(command='call')

def get_class_source(classname, filename):
f = open(filename)

buf = ''
ind0 = None
copying = False
save_next = True

for l in f:
ind = len(l) - len(l.lstrip())

if save_next:
ind0 = ind
save_next = False

if ind0 is not None and ind < ind0:
break

if l.find('class') >= 0 and l.find(classname) > 0:
copying = True
save_next = True

if copying:
buf += l

f.close()

if not buf:
raise RiverError, 'Parsing failed'

return buf

C.2 RAI Server Code [rai.py]

import new, getopt, random, sys, traceback
from river.core.vr import VirtualResource
from river.extensions.remote import *
from river.core.errors import *
from river.core.debug import DBG

def ERR_INVALID_OBJ(id): return 'Invalid object id %s' % st r(id)

def isobject(x):
return not (isinstance(x, int) or isinstance(x, float) or \

isinstance(x, long) or isinstance(x, str) or \
isinstance(x, list) or isinstance(x, dict) or \

isinstance(x, tuple) or x is None)

class NSWrapper(object):
def __init__(self, ns):

self.ns = ns

def __getattr__(self, name):
if self.ns.has_key(name):

return self.ns[name]
else:

raise AttributeError, "No such attribute '%s'" % name

class RAIServer (object):
def __init__(self, mainobj, parent, restrict=True):

self.restrict = restrict

self.ns = globals().copy()
self.ns.update(self.ns['__builtins__'])
del self.ns['__builtins__']

if mainobj is None:
self.mainobj = NSWrapper(self.ns)

else:
self.mainobj = mainobj

self.objcache = { None : self.mainobj }

self.puuid = parent.parent
self.send = parent.send
self.recv = parent.recv

def genID(self):
i = None
while self.objcache.has_key(i):

i = random.randint(0,9999)
return i

def hideobject(self, obj):
id = self.genID()
self.objcache[id] = obj

DBG('rai', '[RAI:hide] caching object, id %d', id)
DBG('rai', str(obj))

return id

def unwrap_one(self, x):
if isinstance(x, RemoteObject):

if x.type == 'callable':
DBG('rai', '[RAI:unwrap] func %s in %s', x.name, x.id)
return getattr(self.objcache[x.id], x.name)

else:
DBG('rai', '[RAI:unwrap] obj %d', x.id)
return self.objcache[x.id]

return x

138



def unwrap(self, x):
if len(x) == 0:

return x

# unwrap any references to remote objects (our local objects )
if isinstance(x, tuple) or isinstance(x, list):

x = tuple([self.unwrap_one(i) for i in x])
elif isinstance(x, dict):

for i in x:
x[i] = self.unwrap_one(x[i])

return x

def reply(self, **kwargs):
kwargs['type'] = '__rai__'

rv = kwargs['rv']
name = kwargs['name']
result = kwargs['result']

if result != 'success':
DBG('rai', '[RAI:reply] ERROR: %s', result)

if callable(rv):
kwargs['rv'] = None
kwargs['result'] = 'function'
DBG('rai', '[RAI:reply] %s is a function', name)

elif isobject(rv):
DBG('rai', 'name change from %s to %s', kwargs['name'],

rv.__class__.__name__)
kwargs['name'] = rv.__class__.__name__
kwargs['id'] = self.hideobject(rv)
kwargs['rv'] = None
kwargs['result'] = 'object'

self.send(**kwargs)

def megafunc(self, packet):
rv = None
id = packet.id
name = packet.name
cmd = packet.command
result = 'success'

DBG('rai', '[RAI:%s] %s in object %s', cmd, name, id)

args = self.unwrap(packet.get('args', []))
kwargs = self.unwrap(packet.get('kwargs', {}))

try:
obj = self.objcache[id]

if cmd == 'getattr':
rv = getattr(obj, name)

elif cmd == 'call':
DBG('rai', ' args: %s kwargs: %s', args, kwargs)
func = getattr(obj, name)
rv = func(*args, **kwargs)

# object does not exist
except KeyError:

result = ERR_INVALID_OBJ(id)
# no such attribute
except (AttributeError, TypeError), e:

result = str(e)
except StopIteration:

result = 'StopIteration'
# any other error
except Exception, e:

result = str(e)

self.reply(command=cmd, id=id, name=name, rv=rv, result =result,
dest=packet.src)

def inject(self, packet):
result = 'success'

if self.restrict:
result = 'Permission denied'

else:
DBG('rai', '[RAI:inject] %s (%s)', packet.name, packet.i njtype)

if packet.injtype == 'data':
self.ns[packet.name] = packet.source

else:
exec packet.source in self.ns

self.send(type='__rai__', command='inject', id=None, n ame=packet.name,
result=result, dest=packet.src)

def delete(self, packet):
id = packet.id

# do not delete the main object
if id is None:

return

try:
del self.objcache[id]
DBG('rai', '[RAI:del] deleted object %d (%d left)', id,

len(self.objcache))
except KeyError:

DBG('rai', '[RAI:del] %s', ERR_INVALID_OBJ(id))

def dispatch(self, p):
if p.type == '__control__' and p.command == 'quit':

if p.src == 'River VM' or p.src == self.puuid:
raise RiverExit, 'termination requested'

else:
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DBG('rai', '[RAI:dispatch] unauthorized termination req uest')

if p.type != '__rai__':
DBG('rai', '[RAI:dispatch] not an RAI packet')
return

if p.command == 'call' or p.command == 'getattr':
self.megafunc(p)

elif p.command == 'inject':
self.inject(p)

elif p.command == 'delete':
self.delete(p)

else:
DBG('rai', '[RAI:dispatch] unknown command %s', p.comman d)

class RAIServerVR (VirtualResource):
def __init__(self, **kwargs):

VirtualResource.__init__(self, **kwargs)

try:
self.module = kwargs['module']

except KeyError:
self.module = None

def usage(self):
print 'usage: river %s [--unrestricted] [module]' % self.a rgs[0]

def main(self):
restrict = True

try:
opts,args = getopt.getopt(self.args[1:], 'u',

['help', 'unrestricted'])
except getopt.GetoptError, e:

print 'ERROR:', e
return -1

for o,a in opts:
if o == '-h' or o == '--help':

self.usage()
return -1

elif o == '-u' or o == '--unrestricted':
restrict = False

if restrict and len(args) == 0:
self.usage()
return -1

if args and self.module:
if args[0].endswith('.py'):

filename = args[0][:-3]
module = self.module

elif args:
filename = args[0]
if args[0].endswith('.py'):

filename = args[0][:-3]

try:
module = __import__(filename)

except ImportError, e:
print 'ERROR: RAI unable to import %s: %s' % (args[0], e)
return -1

print 'RAI serving module', args[0]

elif not restrict:
module = None
filename = '<unrestricted>'

else:
print 'ERROR: no module specified in restricted mode'
return -1

if not restrict:
DBG('rai', 'WARNING: running in unrestricted mode!')

DBG('rai', '[RAI:main] %s serving %s', self.uuid, filenam e)
rai = RAIServer(module, self, restrict)
self.setVMattr('RAI_module', filename)
self.setVMattr('RAI_server', self.uuid)

while 1:
p = self.recv()
try:

rai.dispatch(p)
except RiverError, e:

traceback.print_exc()
except RiverExit:

break

C.3 Trickle [trickle.py]

import sys, os, traceback, getopt, cmd, readline

from river.core.riverVM import RiverVM
from river.core.control import ControlVR
from river.core.vr import VirtualResource
from river.core.launcher import RiverLauncher
from river.extensions.remote import RemoteObject, Remot eVR
from river.extensions.rai import RAIServerVR
from river.core.errors import *
from river.core.options import *

class TrickleError (RiverError):
pass
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class Trickle (VirtualResource):
def __init__(self, **kwargs):

VirtualResource.__init__(self, **kwargs)

g = globals()
g['connect'] = self.connect
g['inject'] = self.inject
g['fork'] = self.fork
g['join'] = self.join
g['joinany'] = self.joinany
g['forkjoin'] = self.forkjoin
g['forkgen_old'] = self.forkgen_old
g['forkwork_old'] = self.forkwork_old
g['forkgen'] = self.forkgen
g['forkwork'] = self.forkwork

def vr_init(self):
discovered = self.discover()
allocated = self.allocate(discovered)
deployed = self.deploy(allocated, module='rai',

args=['rai.py', '--unrestricted'])

self.vrlist = [vm['uuid'] for vm in deployed]

return True

def connect(self, np = 0):
vrcount = len(self.vrlist)
if vrcount < np:

raise TrickleError, 'Not enough VMs found'

if np == 0:
np = vrcount

rv = [RemoteVR(uuid, self) for uuid in self.vrlist[:np]]

return rv

def inject(self, vrs, *args):
if type(vrs) != list:

vrs = [vrs]
for vr in vrs:

for code in args:
vr.inject(code)

def fork_1(self, vr, fname, *args):
return vr.fork(fname, *args)

def fork(self, vrlist, flist, *args):
rv = []
flistp = False
arglistp = False

# Handle simple case: single vr and single func
if not isinstance(vrlist, list) and not isinstance(flist, list):

return vrlist.fork(flist, *args)

if isinstance(flist, list):
flistp = True
if len(vrlist) != len(flist):

raise TrickleError, 'Invalid arguments'

else:
f = flist

if len(args) == 1:
if isinstance(args[0], list):

arglistp = True
arglist = args[0]
if len(vrlist) != len(arglist):

raise TrickleError, 'Invalid arguments'

for i, vr in enumerate(vrlist):
if arglistp:

args = arglist[i]
if not isinstance(args, tuple):

args = [args]
if flistp:

f = flist[i]

rv.append(vr.fork(f, *args))

return rv

def join(self, hlist):
if not isinstance(hlist, list):

return hlist.join()

if len(hlist) == 0:
raise TrickleError, 'join on an empty list'

rvlist = [h.join() for h in hlist]
hlist = []
return rvlist

def joinany(self, hlist):
if not isinstance(hlist, list):

return hlist.join()

if len(hlist) == 0:
raise TrickleError, 'join on an empty list'

m = {}
for h in hlist:

m[h.server] = h

p = self.recv(type='__rai__', command='call')

h = m[p.src]
hlist.remove(h)
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return h, h.processrv(p)

def forkjoin(self, vrlist, flist, *args):
hlist = fork(vrlist, flist, *args)
return join(hlist)

def forkgen_old(self, vrlist, fname, work):
hlist = []

while True:
while len(work) > 0 and len(vrlist) > 0:

w = work.pop()
v = vrlist.pop()
print w
hlist.append(fork(v, fname, w))

if len(hlist) > 0:
h, rv = joinany(hlist)
vrlist.append(h.vr)
yield(rv)

else:
break

# Support sending chunks of work to each VM
# Allow work to be a generator
def forkgen(self, vrlist, fname, work, chunksize=1):

hlist = []

# Initialize generator
if not isinstance(work, list):

workgen = work()

while True:
while len(vrlist) > 0:

if isinstance(work, list):
if len(work) > 0:

if len(work) >= chunksize:
w = work[0:chunksize]
work = work[chunksize:]

else:
w = work
work = []

v = vrlist.pop()
hlist.append(v.fork(fname, w))

else:
break

else:
try:

w = workgen()
except StopIteration:

break
v = vrlist.pop()
hlist.append(fork(v, fname, *w))

if len(hlist) > 0:
h, rv = joinany(hlist)

vrlist.append(h.getparent())
yield(rv)

else:
break

def forkwork_old(self, vrlist, fname, work):
results = []

for rv in forkgen_old(vrlist, fname, work):
results.append(rv)

return results

def forkwork(self, vrlist, fname, work, chunksize=1):
results = []

for rv in forkgen(vrlist, fname, work, chunksize=chunksiz e):
results.append(rv)

return results

def main(self):
sys.argv = self.args[1:]

if len(self.args) == 1:
print 'usage: %s <module>' % self.args[0]
return -1

try:
execfile(self.args[1], globals())

except SystemExit:
pass

except Exception, e:
traceback.print_exc()

# tell all the RAI servers to exit
for vr in self.vrlist:

self.send(dest=vr, type='__control__', command='quit' )

def interpreter(self, interpreter):
interpreter.cmdloop()

class TrickleLauncher (RiverLauncher):
def __init__(self):

RiverLauncher.__init__(self)

self.dbgopts = ['rai']
self.interactive = False

self.register_cmdline_options('', ['interactive'], se lf.parse_cmdline_cb)

def usage(self):
RiverLauncher.usage(self)

print 'Trickle options:'
print ' --interactive : run in interactive mode'
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print
print 'Either a module to run or --interactive must be specif ied.'

def parse_cmdline_cb(self, o, a):
if o == '--interactive': self.interactive = True

def launch(self):
if not self.args and not self.interactive:

self.usage()
return False

self.startRVM()

self.args.insert(0, 'trickle.py')
args = []

if self.interactive:
filename = '<interpreter>'
vr = Trickle(vm=self.rvm, name=filename, args=self.args ,

func='interpreter')
rv = vr.vr_init()

interpreter = TrickleInterpreter()
args = [interpreter]

print '[Trickle Interpreter]'
else:

filename = self.args[1]
vr = Trickle(vm=self.rvm, name=self.args[1], args=self. args)
rv = vr.vr_init()

vr.setVMattr('Trickle', filename)

if not rv:
print 'ERROR: vr_init() failed'

else:
self.cvr.console_in.setmvr(vr)
rv = vr.run(*args)

return rv

class TrickleInterpreter(cmd.Cmd):
intro = """Running Trickle in interactive mode...

Type "help" for more information.
"""

prompt = '>>> '
helpmsg = """Trickle-specific functions:

connect
inject
fork
join
"""

def preloop(self):
self._history = []

self._globals = globals()
self._locals = {}

def precmd(self, line):
self._history.append(line.strip())

return line

def do_history(self, arg):
for i in self._history:

print i

def do_help(self, arg):
print self.helpmsg

def do_EOF(self, arg):
return True

def emptyline(self):
pass

def default(self, line):
try:

exec line in self._locals, self._globals
except Exception, e:

traceback.print_exc()

do_quit = do_EOF
do_exit = do_EOF

if __name__ == '__main__':
sys.setrecursionlimit(100)

tl = TrickleLauncher()
try:

tl.parse_cmdline(sys.argv)
tl.launch()
tl.stop()

except RiverError, e:
print >> sys.stderr, 'ERROR:', e

except RiverExit:
pass

C.4 rMPI Base [mpi.py]

import sys, time, math, string, pickle, random, traceback, inspect
from river.core.vr import VirtualResource
from river.core.debug import DBGR as DBG
from river.core.console import *

mpi_chunksize_bytes = 2**16-1000
mpi_calibration_list_size = 1024
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##
## MPI Datatypes and Helper Datatypes
##

# rMPI specific datatypes
class MPI_Int(object):

def __init__(self, i=None):
self.value = i

def __repr__(self):
return '%d' % self.value

class MPI_Status( object ):
def __init__( self, *args ):

self.MPI_SOURCE = MPI_Int(0)
self.MPI_TAG = 0
self.count = 0

class MPI_Comm( object ):

def __init__( self, _rankToUuid, _uuidToRank ):
self._rankToUuid = _rankToUuid
self._uuidToRank = _uuidToRank

#takes in a rank object, returns the uuid
def rankToUuid( self, rank ):

return self._rankToUuid[rank.value]

#takes in a uuid, returns the rank object
def uuidToRank( self, uuid ):

return MPI_Int( self._uuidToRank[uuid] )

# return a sorted list of available ranks in the communicator
def ranks(self):

ranklist = self._rankToUuid.keys()
ranklist.sort()
return ranklist

# GDB: add rank()

def size(self):
return len(self._rankToUuid.keys())

def has_uuid( self, uuid ):
return self._uuidToRank.has_key( uuid )

def has_rank( self, rank ):
return self._rankToUuid.has_key( rank.value )

class MPI_Group( object ):
#args = _rankToUuid, _uuidToRank
def __init__( self, *args ):

if len( args ) == 2:
self._rankToUuid = args[0]
self._uuidToRank = args[1]

else:
self._rankToUuid = None
self._uuidToRank = None

#sets a Null groups attributes, noop if called on a non null gr oup
def setmaps( self, _rankToUuid, _uuidToRank ):

self._rankToUuid = _rankToUuid
self._uuidToRank = _uuidToRank

def rankToUuid( self, rank ):
return self._rankToUuid[rank.value]

def uuidToRank( self, uuid ):
return self._uuidToRank[uuid]

def has_uuid( self, uuid ):
return self._uuidToRank.has_key( uuid )

def has_rank( self, rank ):
return self._rankToUuid.has_key( rank.value )

class Chunk(object):
def __init__(self, offset, size):

self.offset = offset
self.size = size

class MPI_Datatype(object):
def __init__(self):

# list of chunks
self.chunks = []

# chunk count (may be less than len(chunks))
self.count = 0

# size of type as total number of elements
self.size = 0

# send method (pack, full send, or overlap)
self.method = None

def __repr__(self):
return '<derived datatype>'

def add_chunk(self, offset, size):
for c in self.chunks:

if c.offset + c.size == offset:
c.size += size
DBG('dd', '[dd:add_chunk] + %d at [%d]',

size, c.offset)
return

elif offset + size == c.offset:
c.offset = offset
c.size += size
DBG('dd', '[dd:add_chunk] %d + at [%d]',

size, c.offset)
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return

DBG('dd', '[dd:add_chunk] new size %d at offset %d',
size, offset)

self.chunks.append(Chunk(offset, size))

def copy_chunks(self, old_type, base):
for c in old_type.chunks:

offset = base + c.offset
self.add_chunk(offset, c.size)

# Default communicator
MPI_COMM_WORLD = MPI_Comm( None, None )

# Technique to get enumerated constants
# We can easily add a new constant in an arbitrary position

class mpi_range(object):
def __init__(self, start):

self.start = start
def next(self):

tmp = self.start
self.start += 1
return tmp

# Using larger ints to decrease chance of user error
mpi_robj = mpi_range(10007)

# MPI Datatypes

MPI_CHAR = mpi_robj.next()
MPI_INT = mpi_robj.next()
MPI_LONG = mpi_robj.next()
MPI_FLOAT = mpi_robj.next()
MPI_DOUBLE = mpi_robj.next()

# Datatype dictionary
mpi_types = {}
mpi_types[MPI_CHAR] = str
mpi_types[MPI_INT] = int
mpi_types[MPI_LONG] = long
mpi_types[MPI_FLOAT] = float
mpi_types[MPI_DOUBLE] = float

mpi_zero_values = {}
mpi_zero_values[MPI_CHAR] = ' '
mpi_zero_values[MPI_INT] = 0
mpi_zero_values[MPI_LONG] = 0L
mpi_zero_values[MPI_FLOAT] = 0.0
mpi_zero_values[MPI_DOUBLE] = 0.0

# Datatype sizes (hardcoded for now, based on pickle highest protocol)
mpi_types_size = {}
mpi_types_size[MPI_CHAR] = 2
mpi_types_size[MPI_INT] = 5
mpi_types_size[MPI_LONG] = 5

mpi_types_size[MPI_FLOAT] = 9
mpi_types_size[MPI_DOUBLE] = 9

# MPI Operations
MPI_MAX = mpi_robj.next()
MPI_MIN = mpi_robj.next()
MPI_SUM = mpi_robj.next()
MPI_PROD = mpi_robj.next()
MPI_LAND = mpi_robj.next()
MPI_BAND = mpi_robj.next()
MPI_LOR = mpi_robj.next()
MPI_BOR = mpi_robj.next()
MPI_LXOR = mpi_robj.next()
MPI_BXOR = mpi_robj.next()
MPI_MAXLOC = mpi_robj.next()
MPI_MINLOC = mpi_robj.next()

# Operations dictionary
mpi_ops = {}

mpi_ops[MPI_MAX] = max
mpi_ops[MPI_MIN] = min
mpi_ops[MPI_SUM] = lambda x, y: x + y
mpi_ops[MPI_PROD] = lambda x, y: x * y
mpi_ops[MPI_LAND] = lambda x, y: x and y
mpi_ops[MPI_BAND] = lambda x, y: x & y
mpi_ops[MPI_LOR] = lambda x, y: x or y
mpi_ops[MPI_BOR] = lambda x, y: x | y
mpi_ops[MPI_LXOR] = lambda x, y: (x or y) and not (x and y)
mpi_ops[MPI_BXOR] = lambda x, y: x ˆ y
mpi_ops[MPI_MAXLOC] = None
mpi_ops[MPI_MINLOC] = None

# MPI Errors
MPI_SUCCESS = mpi_robj.next()
MPI_ERR_COMM = mpi_robj.next()
MPI_ERR_TYPE = mpi_robj.next()
MPI_ERR_COUNT = mpi_robj.next()
MPI_ERR_TAG = mpi_robj.next()
MPI_ERR_RANK = mpi_robj.next()
MPI_ERR_ARG = mpi_robj.next()
MPI_ERR_OTHER = mpi_robj.next()

# Null Process Rank
MPI_PROC_NULL = MPI_Int(-1)

# Helpers
RANK_OFFSET = 1

##
## Main mpi VirtualResource class
##

# ASF: chop and glue routines
# these need to be imported after the definition of MPI_Datat ype
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from chop import chop, Glue

class MPI( VirtualResource ):

# All VR's init here
def __init__( self, **kwargs ):

VirtualResource.__init__( self, **kwargs )
self.args = kwargs['args']
self.mpi_inited = False
self.msg_uid = 0

# ASF: populate global namespace with MPI_* functions
# extra special Python trickery because globals() gives us
# the wrong global dictionary
#g = globals()
g = sys.modules[self.getName()].__dict__
for k in dir(self):

if k.startswith('MPI_'):
g[k] = getattr(self, k)

# Initiator only falls thru to here, then to main
# GDB: fix -np
# np: number of processes
# nc: number of consoles to map
def vr_init( self, np=1, nc=1 ):

# Initiator is always rank 0
self.rank = None

# Find and get the number of available VMs requested
vmlist = self.discover()
# Allocate np VMs
nodes = self.allocate( vmlist[0:np] )
uuids = [vm['uuid'] for vm in nodes]
self.control_vrs = [vm['cvr'] for vm in nodes]

# Check number of VMs grabbed
needed = np
got = len( uuids )
if needed != got:

print 'needed %d VMs, but got %d' % (np, got)
self.deallocate( VMs=nodes )
return False

# Control VR reverse map
self.nconsoles = nc
self.cvrToRank = {}
for i, cvr in enumerate(self.control_vrs):

self.cvrToRank[cvr] = i

# Map their ranks (starting at 1. 0 is reserved for initiator)
self.rankToUuid = {}
for cur in uuids:

self.rankToUuid[uuids.index( cur )] = cur

# The reverse mapping
self.uuidToRank = {}

for cur in self.rankToUuid:
self.uuidToRank[self.rankToUuid[cur]] = cur

# For now, take it on faith that all deployments were succesfu l
# TODO: check deploy list against discover list for verifica tion
VMs = self.deploy( VMs=nodes, module=self.__module__,

func='nodeStart' )

# Set remote console access
for i in xrange(nc):

ConsoleClient(self.control_vrs[i], self)

# Tell everyone their ranks, the module name, and send the
# list of ranks
# for now assume everything goes ok
# GDB: move this to a deploy argument
for vr in uuids:

self.send( dest=vr, tag='ranks', ranks=self.rankToUuid ,
uuids=self.uuidToRank, rank=uuids.index( vr ) )

self.startfunc = self.initiatorStart
return True

def initiatorStart( self ):

active_vrs = len(self.uuidToRank)

# Wait for MPI VRs to complete and display remote console outp ut
while active_vrs:

p = self.recv()

if p.src in self.uuidToRank and p.tag == 'done':
active_vrs -= 1

elif p.src in self.control_vrs and p.command == 'console':
print p.data,

else:
print 'Unrecognized packet: ', p

# Set remote console access
for cvr in self.control_vrs:

self.send(dest=cvr, type='__control__',
command='console', subcommand='unsetout')

print 'All MPI processes have finished'

def nodeStart( self ):
master = self.parent
p = self.recv( src=master, tag='ranks' )
self.rank = MPI_Int( p.rank )
self.rankToUuid = p.ranks
self.uuidToRank = p.uuids

# ASF: add exception handling and print to stdout, which
# will be sent to the initiator
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try:
self.main(self.args)

except Exception, e:
traceback.print_exc(None, sys.stdout)

## can we check if console_out is done

self.send( dest = self.parent, tag='done')

# Helper Functions

def isValidRank( self, rank, comm ):
return comm.has_rank( rank )

def isInited( self ):
return self.mpi_inited

def getMsgUid( self ):
id = self.msg_uid
self.msg_uid = self.msg_uid + 1
return id

# Convert int ranks into MPI_Int values
def normalize_rank(self, rank):

if isinstance(rank, MPI_Int):
# TODO: why doesn't this work???
pass

elif rank.__class__.__name__ == 'MPI_Int':
pass

elif isinstance(rank, int):
rank = MPI_Int(rank)

else:
raise TypeError, 'rank must be MPI_Int or int, not %s' % type( rank)

return rank

# Buffer/chunk calculations

def mpi_getchunksize(self, datatype):
if isinstance(datatype, MPI_Datatype):

# derived type
# TODO this calculation depends on base types in
# buffer
csize = mpi_chunksize_bytes / \

mpi_types_size[MPI_DOUBLE]
else:

# base types
csize = mpi_chunksize_bytes / \

mpi_types_size[datatype]

DBG('mpi', '[getchunksize] chunk size for type %s: %d',
datatype, csize)

return csize

##

## Environment Management Routines
##

def MPI_Init(self, *args):
if not self.isInited():

global MPI_COMM_WORLD
MPI_COMM_WORLD._rankToUuid = self.rankToUuid
MPI_COMM_WORLD._uuidToRank = self.uuidToRank
self.mpi_inited = True
del self.rankToUuid

else:
raise ValueError, 'MPI_Init called previously'

# Return a group of the processes associated with comm
def MPI_Comm_group( self, comm, group ):

group.setmaps( comm._rankToUuid, comm._uuidToRank )
return MPI_SUCCESS

def MPI_Comm_size( self, comm, size ):
size.value = len( comm._rankToUuid )
return MPI_SUCCESS

def MPI_Comm_rank( self, comm, rank ):
rank.value = comm.uuidToRank( self.uuid ).value
return MPI_SUCCESS

def MPI_Comm_split( self, oldComm, color, key, newComm ):
pass

# inclRanks is a list of ranks(ints) to include in the new grou p
# This version of MPI_Group_incl knows the size of the new gro up
# based on the number of processes in oldGroup
def MPI_Group_incl( self, oldGroup, num, inclRanks, newGr oup ):

rankToUuid = {}
uuidToRank = {}

for rank in inclRanks:
uuid = oldGroup._rankToUuid[rank]
rankToUuid[rank] = uuid
uuidToRank[uuid] = rank

newGroup.setmaps( rankToUuid, uuidToRank )

# Returns the number of processes in group
def MPI_Group_size( self, group, size ):

size.value = len( group._rankToUuid )
return MPI_SUCCESS

def MPI_Abort ( comm, errorcode ):
raise NotImplementedError, 'MPI_Abort not implemented'

def MPI_Get_processor_name (name, resultlength ):
raise NotImplementedError, 'MPI_Get_processor_name not implemented'

def MPI_Wtime( self ):
return time.time()
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def MPI_Wtick ():
raise NotImplementedError, 'MPI_Wtick not implemented'

def MPI_Get_count( self, status, datatype, count ):
count.value = status.count

def MPI_Finalize( self ):
self.mpi_inited = False

#
# Send/Recv Engine
#
# mpi_send_buf()
# mpi_recv_buf()
#
# These are used to build all of the MPI communication functio ns,
# both point to point and collective communication.
#
# Note that mpi_recv_buf() requires an offset parameter. Th is
# parameter serves as a "pointer" into the recvbuf, thus avoi ding
# a temporary buffer.

# Send large bufs as a series of chunks to reduce memory footpr int
def mpi_send_buf(self, buf, offset, count, datatype, dest , tag,

comm, typesig):
destUuid = comm.rankToUuid( dest )
chunksize = self.mpi_getchunksize(datatype)

# GDB: fix: compute send size based on datatype and count
if isinstance(datatype, MPI_Datatype):

sendsize = count * datatype.size
else:

sendsize = count
DBG('mpi', '[mpi_send_buf] sendsize: %d', sendsize)

mtype = 'large'
last = False

if sendsize <= chunksize:
mtype = 'small'

chunkcount = 0
total = 0
for c in chop(buf, offset, count, datatype, chunksize):

chunkcount += 1
total += len(c)
if total >= sendsize:

last = True

self.send( dest=destUuid, tag=tag, buf=c,
mtype=mtype, last=last, typesig=typesig )

if mtype == 'large':
p = self.recv(src=destUuid, tag=tag, ack=True)

DBG('mpi', '[mpi_send_buf] sent %d chunks', chunkcount)

# Receive large bufs as a series of chunks to reduce memory foo tprint
def mpi_recv_buf(self, buf, offset, count, datatype, src, tag,

comm, typesig):
srcUuid = comm.rankToUuid( src )
g = Glue(datatype, buf, offset)

chunkcount = 0
while True:

p = self.recv(src=srcUuid, tag=tag, typesig=typesig)
if p.mtype == 'large':

self.send( dest=srcUuid, tag=tag, ack=True )

g.glue(p.buf)
chunkcount += 1
if p.last:

break

DBG('mpi', '[mpi_recv_buf] received %d chunks', chunkcou nt)

##
## Point to Point Communication Routines
##

# Notes
# - Tags can be and int or mpi_Tag()
# - Perform sanity checks to help programmer

def MPI_Send( self, buf, count, datatype, dest, tag, comm ):
# Parameter sanity checks
dest = self.normalize_rank(dest)
offset = 0

if isinstance(buf, tuple):
buf,offset = buf

if not isinstance(buf, list):
raise TypeError, 'buf must be a list'

# derived datatype
if not isinstance(datatype, MPI_Datatype) and \

not isinstance(buf[0], mpi_types[datatype]):
raise TypeError, 'buf type and datatype do not match'

if len(buf) < count:
raise ValueError, 'buf length < count'

# compute type signature
if isinstance(datatype, MPI_Datatype):

# TODO: depends on entries in buffer
typesig = (MPI_DOUBLE, datatype.size)

else:
typesig = (datatype, count)

DBG('mpi', '[send] type signature: %s', typesig)
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if dest.value != MPI_PROC_NULL.value:
self.mpi_send_buf(buf, offset, count, datatype, dest,

tag, comm, typesig)

return MPI_SUCCESS

def MPI_Recv( self, buf, count, datatype, src, tag, comm, st atus ):
# Parameter sanity checks
src = self.normalize_rank(src)
offset = 0

if isinstance(buf, tuple):
buf,offset = buf

if not isinstance(buf, list):
raise TypeError, 'buf must be a list'

# derived datatype
if not isinstance(datatype, MPI_Datatype) and \

not isinstance(buf[0], mpi_types[datatype]):
raise TypeError, 'buf type and datatype do not match'

#if len(buf) < self.getbufsize(count):

if len(buf) < count:
print "[MPI_Recv]buf=%s/count=%d" % (buf, count)
raise ValueError, 'buf length < count'

# compute type signature
if isinstance(datatype, MPI_Datatype):

# TODO: depends on entries in buffer
typesig = (MPI_DOUBLE, datatype.size)

else:
typesig = (datatype, count)

DBG('mpi', '[recv] type signature: %s', typesig)

if src.value != MPI_PROC_NULL.value:
srcUuid = comm.rankToUuid( src )
self.mpi_recv_buf(buf, offset, count, datatype, src,

tag, comm, typesig)
if status != None:

status.MPI_SOURCE = src
status.MPI_TAG = tag
# GDB: change to real receive count
status.count = len(buf)

return MPI_SUCCESS

def MPI_Sendrecv(self, sendbuf, sendcount, sendtype, des t, sendtag,
recvbuf, recvcount, recvtype, src, recvtag, comm, status) :

dest = self.normalize_rank(dest)
src = self.normalize_rank(src)

if (src.value != MPI_PROC_NULL.value) and \
(dest.value != MPI_PROC_NULL.value):

self.MPI_Send(sendbuf, sendcount, sendtype, dest,
sendtag, comm)

self.MPI_Recv(recvbuf, recvcount, recvtype, src,
recvtag, comm, status)

return MPI_SUCCESS

##
## Collective Communcation Routines
##

def MPI_Barrier( self, comm ):
root = MPI_Int(0)

# Gather then Bcast
self.MPI_Gather( [0], 1, MPI_INT, [0], 1, MPI_INT, root, co mm )
self.MPI_Bcast( [0], 1, MPI_INT, root, comm )

return MPI_SUCCESS

def MPI_Bcast( self, sendbuf, count, datatype, root, comm ) :
root = self.normalize_rank(root)
msgUid = self.getMsgUid()

# Root sends to all processes
if self.uuid == comm.rankToUuid( root ):

for r in comm.ranks():
if r != root.value:

self.MPI_Send(sendbuf, count, datatype,
MPI_Int(r), msgUid, comm)

# Others receive from root
else:

status = MPI_Status()
self.MPI_Recv(sendbuf, count, datatype, root, msgUid,

comm, status)

return MPI_SUCCESS

# Distribute the contents of root sendbuf into recvbufs of al l the
# processes
def MPI_Scatter( self, sendbuf, sendcount, sendtype, recv buf,

recvcount, recvtype, root, comm ):
root = self.normalize_rank(root)

msgUid = self.getMsgUid()

# Root sends to everyone
if self.uuid == comm.rankToUuid( root ):

for cur in comm.ranks():
start = cur * sendcount
end = start + sendcount
if cur != root.value:

self.MPI_Send((sendbuf, start),
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sendcount, sendtype, MPI_Int(cur),
msgUid, comm)

else:
recvbuf[0:recvcount] = \

sendbuf[start:end]

# Others receive from root
else:

self.MPI_Recv(recvbuf, recvcount, recvtype,
root, msgUid, comm, MPI_Status())

return MPI_SUCCESS

# Collect the contents of each procs sendbuf into recvbuf on t he proc
# with rank root
def MPI_Gather( self, sendbuf, sendcount, sendtype, recvb uf, recvcount,

recvtype, root, comm ):
root = self.normalize_rank(root)
msgUid = self.getMsgUid()
destUuid = comm.rankToUuid(root)

# Everyone sends to root
if self.uuid != destUuid:

self.MPI_Send(sendbuf, sendcount, sendtype,
root, msgUid, comm)

# Root recvs from everyone in comm
else:

for i in comm.ranks():
start = i * recvcount
end = start + recvcount
if i != root.value:

self.MPI_Recv((recvbuf, start),
recvcount, recvtype, MPI_Int(i),
msgUid, comm, MPI_Status())

else:
recvbuf[start:end] = sendbuf

return MPI_SUCCESS

def MPI_Allgather( self, sendbuf, sendcount, sendtype, re cvbuf,
recvcount, recvtype, comm ):

root = MPI_Int( 0 )

self.MPI_Gather( sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm )

self.MPI_Bcast( recvbuf, recvcount * comm.size(), recvty pe,
root, comm )

return MPI_SUCCESS

def MPI_Reduce( self, sendbuf, recvbuf, count, datatype, o perator,
root, comm ):

root = self.normalize_rank(root)

if not operator in mpi_ops:
raise TypeError, 'invalid operator'

op = mpi_ops[operator]

size = comm.size()
rank = comm.uuidToRank(self.uuid)

# Temporary list buffer for the operands
temp = [ mpi_zero_values[datatype] ] * (count * size)

self.MPI_Gather( sendbuf, count, datatype, temp, count,
datatype, root, comm )

if rank.value == root.value:
for i in xrange(count):

recvbuf[i] = temp[i]
for j in xrange(1, size):

recvbuf[i] = op(recvbuf[i],
temp[j*count])

return MPI_SUCCESS

def MPI_Allreduce( self, sendbuf, recvbuf, count, datatyp e, operator,
comm ):

root = MPI_Int( 0 )
self.MPI_Reduce( sendbuf, recvbuf, count, datatype, oper ator,

root, comm )
self.MPI_Bcast( recvbuf, count, datatype, root, comm )

return MPI_SUCCESS

def MPI_Reduce_scatter( self, sendbuf, recvbuf, count, da tatype,
operator, comm ):

root = MPI_Int( 0 )

reduceTemp = recvbuf * comm.size()
reduceSize = count * comm.size()

self.MPI_Reduce( sendbuf, reduceTemp, reduceSize, datat ype,
operator, root, comm )

self.MPI_Scatter( reduceTemp, count, datatype, recvbuf, count,
datatype, root, comm )

return MPI_SUCCESS

def MPI_Alltoall( self, sendbuf, sendcount, sendtype, rec vbuf,
recvcount, recvtype, comm ):

for i in xrange(comm.size()):
root = MPI_Int( i )
tempbuf = [ mpi_zero_values[recvtype] ] * sendcount
self.MPI_Scatter( sendbuf, sendcount, sendtype,

tempbuf, recvcount, recvtype, root, comm )
recvbuf[i*sendcount : (i+1)*sendcount] = tempbuf

return MPI_SUCCESS
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def MPI_Scan( self, sendbuf, recvbuf, count, datatype, ope rator, comm ):
if not operator in mpi_ops:

raise TypeError, 'invalid operator'
op = mpi_ops[operator]

size = comm.size()
rank = comm.uuidToRank(self.uuid)

# Temporary list buffer for the operands
temp = [ mpi_zero_values[datatype] ] * (count * size)

self.MPI_Allgather( sendbuf, count, datatype, temp, coun t,
datatype, comm )

for i in xrange(count):
recvbuf[i] = temp[i]
for j in xrange(1, self.rank.value + 1):

recvbuf[i] = op(recvbuf[i],temp[j*count])

return MPI_SUCCESS

C.5 rMPI Derived Datatypes [dd.py]

# deprived datatypes for rMPI
from mpi import *
from river.core.debug import DBGR as DBG

DDT_FULL_SEND = mpi_robj.next()
DDT_PACK_SEND = mpi_robj.next()
DDT_OVERLAP_SEND = mpi_robj.next()
DDT_SMALL = 4096

class MPI_DD (MPI):
def MPI_Type_contiguous(self, count, old_type, new_type ):

# old type must exist (either basic or derived)
# at the same time, calculate number of chunks required
if isinstance(old_type, MPI_Datatype):

k = old_type.count * count
elif mpi_types.has_key(old_type):

k = 1
else:

return MPI_ERR_ARG

DBG('dd', '[dd:contiguous] at most %d chunks', k)

# copy chunks from old_type count times
if isinstance(old_type, MPI_Datatype):

n = old_type.size
w = old_type.width
for i in xrange(count):

new_type.copy_chunks(old_type, i)

# one contiguous chunk

else:
n = 1
w = 1
new_type.add_chunk(0, count)

new_type.count = len(new_type.chunks)
new_type.size = n * count
new_type.width = w * count

# "register" the new type
mpi_types[new_type] = mpi_robj.next()

DBG('dd', '[dd:contiguous] size: %d count: %d width: %d',
new_type.size, new_type.count, new_type.width)

return MPI_SUCCESS

def MPI_Type_struct():
pass

# count: number of elements in the type
# block_length: number of entries in each element
# stride: num of elements of type old_type between successiv e elements
def MPI_Type_vector(self, count, block_length, stride, o ld_type, new_type):

# old type must exist (either basic or derived)
# at the same time, calculate number of chunks required
if isinstance(old_type, MPI_Datatype):

k = old_type.count * count * block_length
elif mpi_types.has_key(old_type):

k = count * block_length
else:

return MPI_ERR_ARG

DBG('dd', '[dd:vector] at most %d chunks', k)

if isinstance(old_type, MPI_Datatype):
n = block_length * old_type.size
w = block_length * old_type.width
for i in xrange(count):

offset = i * stride * old_type.width
DBG('dd', ' %d %d %d = %d', i, stride, w, offset)
DBG('dd', '[dd:vector] %d * %d chunks from old',

block_length, old_type.count)
for j in xrange(block_length):

new_type.copy_chunks(old_type,
offset + j)

# base type: each element is its own chunk
else:

n = block_length
w = block_length
for i in xrange(count):

offset = i * stride
new_type.add_chunk(offset, block_length)

new_type.count = len(new_type.chunks)
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new_type.size = n * count
new_type.width = w

# "register" the new type
mpi_types[new_type] = mpi_robj.next()

DBG('dd', '[dd:vector] size: %d count: %d width: %d',
new_type.size, new_type.count, new_type.width)

return MPI_SUCCESS

def MPI_Type_indexed():
pass

def MPI_Type_commit(self, ddt):
if not isinstance(ddt, MPI_Datatype):

return MPI_ERR_ARG

DBG('dd', '[dd:commit] original size: %d count: %d',
ddt.size, ddt.count)

newchunks = []
for c in ddt.chunks:

DBG('dd', '%3d [%3d]', c.offset, c.size)

p = ddt.chunks.pop(0)
for c in ddt.chunks:

if p.offset + p.size == c.offset:
p.size += c.size

elif c.offset + c.size == p.offset:
p.offset = c.offset
p.size += c.size

else:
newchunks.append(p)
p = c

newchunks.append(p)

ddt.chunks = newchunks
ddt.count = len(newchunks)

DBG('dd', '[dd:commit] new size: %d count: %d',
ddt.size, ddt.count)

for c in ddt.chunks:
DBG('dd', '%3d [%3d]', c.offset, c.size)

if ddt.count == 1:
ddt.method = DDT_FULL_SEND

else:
if ddt.size <= DDT_SMALL:

ddt.method = DDT_PACK_SEND
else:

ddt.method = DDT_OVERLAP_SEND

def MPI_Pack(self, inbuf, incount, datatype, outbuf, outs ize,
position, comm):

if isinstance(inbuf, tuple):
inbuf,base = inbuf

else:
base = 0

if isinstance(outbuf, tuple):
outbuf,out_off = outbuf

else:
out_off = 0

if not isinstance(inbuf, list) or \
not isinstance(outbuf, list) or \
not isinstance(position, MPI_Int):

return MPI_ERR_ARG

pos = out_off + position.value
if not isinstance(datatype, MPI_Datatype):

outbuf[pos:pos+incount] = inbuf[:incount]
position.value += incount
return MPI_SUCCESS

for i in xrange(incount):
for c in datatype.chunks:

if c.size == 0: continue
offset = base + c.offset
n = c.size
outbuf[pos:pos+n] = inbuf[offset:offset+n]
pos += n

base += datatype.size

position.value = pos - out_off

return MPI_SUCCESS

def MPI_Unpack(self, inbuf, insize, position, outbuf, out count,
datatype, comm):

if isinstance(inbuf, tuple):
inbuf,in_off = inbuf

else:
in_off = 0

if isinstance(outbuf, tuple):
outbuf,base= outbuf

else:
base = 0

if not isinstance(inbuf, list) or \
not isinstance(outbuf, list) or \
not isinstance(position, MPI_Int):

return MPI_ERR_ARG

pos = in_off + position.value
if not isinstance(datatype, MPI_Datatype):

outbuf[base:base+outcount] = inbuf[pos:pos+outcount]
position.value += outcount
return MPI_SUCCESS
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for i in xrange(outcount):
for c in datatype.chunks:

offset = base + c.offset
n = c.size
outbuf[offset:offset+n] = inbuf[pos:pos+n]
pos += n

base += datatype.size

position.value = pos - in_off

return MPI_SUCCESS

def MPI_Type_hvector():
pass

def MPI_Type_hindexed():
pass

def MPI_Type_free(self, datatype):
pass

def MPI_Type_extent():
pass

def MPI_Type_size():
pass

def MPI_Type_lb():
pass

def MPI_Type_ub():
pass

def MPI_Address():
pass

C.6 rMPI Non-blocking [nbmpi.py]

import sys, time, math, string, pickle, random
from river.core.vr import VirtualResource
from river.core.debug import *
from river.core.console import *
from mpi import *
from chop import chop, Glue

## Request Type
MPI_REQ_SEND = mpi_robj.next()
MPI_REQ_RECV = mpi_robj.next()
MPI_REQUEST_NULL = mpi_robj.next()

# stage 1. registered
trans_stat_new = "new"

# stage 2. confirmed with post
trans_stat_work = "work"
# stage 3. done
trans_stat_done = "done"

class MPI_Request( object ):
def __init__( self, *args ):

self.type = None
self.source = None
self.dest = None
self.tag = 0
self.count = 0
self.comm = None
self.buffer = None
self.datatype = None
self.offset = 0
## type signature for derived datatype
self.typesig = None
self.chops = None
self.sendsize = 0
self.gluebuf = None
self.recvsize = 0
## the attrs for TransManager
self.trans_sender = 0
self.trans_recver = 0
self.trans_id = 0
self.trans_status = trans_stat_new
self.trans_chunknum = 0

def __repr__(self):
output = None
if self.type == MPI_REQ_SEND:

output = "[SendRequest] destRank=%s, " % self.dest.value
elif self.type == MPI_REQ_RECV:

output = "[RecvRequest] srcRank=%s, " % self.source.value
return output + "tag=%s, sender=%s, recver=%s, status=%s, chunknum=%d" \

% (self.tag, self.trans_sender, self.trans_recver,
self.trans_status, self.trans_chunknum)

class MPI_NB( MPI ):

## override MPI_Init to initiate TransManager
def MPI_Init( self ):

if not self.isInited():
global MPI_COMM_WORLD
MPI_COMM_WORLD._rankToUuid = self.rankToUuid
MPI_COMM_WORLD._uuidToRank = self.uuidToRank
self.mpi_inited = True
del self.rankToUuid
self.transManager = TransManager()

else:
raise ValueError, 'MPI_Init called previously'

## To make blocking operations interact with nonblocking op erations
## override MPI_Send and MPI_Recv to use TransManager

153



def MPI_Send( self, buf, count, datatype, dest, tag, comm ):
send_request = MPI_Request()

self.MPI_Isend(buf, count, datatype, dest, tag, comm, sen d_request)
self.trans_process_request(send_request)

return MPI_SUCCESS

def MPI_Recv( self, buf, count, datatype, src, tag, comm, st atus ):
recv_request = MPI_Request()

self.MPI_Irecv(buf, count, datatype, src, tag, comm, recv _request)
self.trans_process_request(recv_request)

return MPI_SUCCESS

## Nonblocking P2P operations
def MPI_Isend( self, buf, count, datatype, dest, tag, comm, request):

offset = 0
if isinstance(buf, tuple):

buf,offset = buf

if not isinstance(buf, list):
raise TypeError, 'buf must be a list'

# derived datatype
if not isinstance(datatype, MPI_Datatype) and \

not isinstance(buf[0], mpi_types[datatype]):
raise TypeError, 'buf type and datatype do not match'

if len(buf) < count:
raise ValueError, 'buf length < count'

# compute type signature
if isinstance(datatype, MPI_Datatype):

# TODO: depends on entries in buffer
request.typesig = (MPI_DOUBLE, datatype.size)

else:
request.typesig = (datatype, count)

DBG('mpi', '[send] type signature: %s', request.typesig)

# Parameter sanity checks
dest = self.normalize_rank(dest)
destUuid = comm.rankToUuid( dest )

if dest.value == MPI_PROC_NULL.value:
return MPI_ERR_RANK

chunksize = self.mpi_getchunksize(datatype, count)
request.type = MPI_REQ_SEND
# save the rank obj
request.dest = dest
request.tag = tag
request.comm = comm

request.count = count
request.buffer = buf
request.datatype = datatype
request.offset = offset
request.chops = chop(buf, offset, count, datatype, chunks ize)

if isinstance(datatype, MPI_Datatype):
request.sendsize = count * datatype.size

else:
request.sendsize = count

self.transManager.register(request)
## send the sendpost
self.send( dest=destUuid, tag=tag, mtype="sendpost",

sender=request.trans_sender)

return MPI_SUCCESS

# MPI_Irecv (&buf,count,datatype,source,tag,comm,&req uest)
def MPI_Irecv( self, buf, count, datatype, src, tag, comm, r equest ):

offset = 0
if isinstance(buf, tuple):

buf,offset = buf

if not isinstance(buf, list):
raise TypeError, 'buf must be a list'

# derived datatype
if not isinstance(datatype, MPI_Datatype) and \

not isinstance(buf[0], mpi_types[datatype]):
raise TypeError, 'buf type and datatype do not match'

if len(buf) < count:
raise ValueError, 'buf length < count'

# compute type signature
if isinstance(datatype, MPI_Datatype):

# TODO: depends on entries in buffer
request.typesig = (MPI_DOUBLE, datatype.size)

else:
request.typesig = (datatype, count)

# Parameter sanity checks
src = self.normalize_rank(src)
srcUuid = comm.rankToUuid( src )

if src.value == MPI_PROC_NULL.value:
return MPI_ERR_RANK

request.type = MPI_REQ_RECV
# save the rank obj
request.source = src
request.tag = tag
request.comm = comm
request.count = count
request.buffer = buf
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request.datatype = datatype
request.offset = offset
request.gluebuf = Glue(datatype, buf, offset)
self.transManager.register(request)
## send the recvpost
self.send(dest=srcUuid, tag=tag, mtype="recvpost",

recver=request.trans_recver)

return MPI_SUCCESS

def MPI_Wait(self, request, status):
DBG('trans', 'MPI_Wait request= %s', request)

if request == MPI_REQUEST_NULL:
return MPI_SUCCESS

self.trans_process_request(request)

## set up status
if request.type == MPI_REQ_RECV:

status.MPI_SOURCE = request.source
status.MPI_TAG = request.tag
status.count = request.recvsize

request = MPI_REQUEST_NULL
return MPI_SUCCESS

def MPI_Waitall(self, count, requests, statuses):
if len(requests) < count:

raise ValueError, 'request size < count'
if len(requests) != len(statuses):

raise ValueError, 'request size is not equal to status size'

for i in xrange(count):
self.MPI_Wait(requests[i], statuses[i])

return MPI_SUCCESS

# Send chunks on demand
def trans_send_chunk(self, request):

destUuid = request.comm.rankToUuid( request.dest )

sendchunk = request.chops.next()

request.sendsize -= len(sendchunk)
if (request.sendsize <= 0):

last = True
request.trans_status = trans_stat_done

else:
last = False

self.send(dest=destUuid, tag=request.tag, buf=sendchu nk, mtype="send",
last=last, typesig=request.typesig, recver=request.tr ans_recver)

request.trans_chunknum += 1

DBG('trans', 'trans_send_chunk after = %s', request)

## receive buffer from packet and ask for next buffer if there is one
def trans_recv_packet(self, p, request):

offset = request.offset
request.gluebuf.glue(p.buf)
request.recvsize += len(p.buf)

if p.last == False:
srcUuid = request.comm.rankToUuid( request.source )
## ask for next chunk
self.send(dest=srcUuid, mtype="recv", tag=request.tag ,

sender=request.trans_sender )
else:

request.trans_status = trans_stat_done

request.trans_chunknum += 1
DBG('trans', 'trans_recv_packet after = %s', request)

def trans_process_request(self, request):
if request.trans_status == trans_stat_done:

## unregister the request
self.transManager.unregister(request)
return

## A confirmed send request and the first chunk is not sent yet
if request.type==MPI_REQ_SEND \

and request.trans_status == trans_stat_work \
and request.trans_chunknum == 0 :

self.trans_send_chunk(request)

while (request.trans_status != trans_stat_done):
DBG('trans', 'TransManager = %s', self.transManager)
p = self.recv(dest=self.uuid,

mtype=(lambda x: x=='sendpost' or x=='recvpost' \
or x=='send' or x=='recv'))

DBG('trans', 'recv package = %s', p)
## source's rank value
srcRankValue = self.uuidToRank[p.src]
if p.mtype == "sendpost" :

## receive send post
recvreq = self.transManager.recvready(srcRankValue, p. tag,

p.sender)

elif p.mtype == "recvpost":
## receive recv post
sendreq = self.transManager.sendready(srcRankValue,

p.tag, p.recver)
## if sendreq is not registered yet,
## this post will be save in transManager.recvqueue
if sendreq != None:

# start to send
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self.trans_send_chunk(sendreq)

elif p.mtype == "send":
req = self.transManager.getreq(p.recver)
self.trans_recv_packet(p, req)

elif p.mtype == "recv":
sendreq = self.transManager.getreq(p.sender)
self.trans_send_chunk(sendreq)

else:
print "trans: unexpected packet=", p

## unregister the request
self.transManager.unregister(request)
return

class TransManager( object ):
def __init__( self, *args ):

self.transmap = {}
self.rcount = 0
## request wait for ACK
self.newsend = []
self.newrecv = []
## might receive ACK for future requests
self.sendqueue = []
self.recvqueue = []

def __str__(self):
output = "Requests=%s/ new send=%s, new recv=%s / sendq=%s, recvq=%s " \

% (self.transmap, self.newsend, self.newrecv, self.send queue,
self.recvqueue)

return output

def register(self, request):
self.rcount += 1
request.trans_id = self.rcount
if request.type == MPI_REQ_SEND:

self.registerSend(request)
elif request.type == MPI_REQ_RECV:

self.registerRecv(request)

self.transmap[request.trans_id] = request
return

def registerSend(self, sendreq):
sendreq.trans_sender = sendreq.trans_id
DBG('trans', 'registerSend= %s', sendreq.trans_id)

## check if vr received ACK already
for ack in self.sendqueue :

## ack = [dest,tag,recver]
if ack[0] == sendreq.dest.value and ack[1] == sendreq.tag:

sendreq.trans_recver = ack[2]
sendreq.trans_status = trans_stat_work

self.sendqueue.remove(ack)
DBG('trans', 'send request is confirmed= %s', sendreq)
break

## no ack yet, it is a new send request
if sendreq.trans_status == trans_stat_new :

self.newsend.append(sendreq.trans_id)

def registerRecv(self, recvreq):
recvreq.trans_recver = recvreq.trans_id
DBG('trans', 'registerRecv= %s', recvreq.trans_id)

## check if vr received ACK already
for ack in self.recvqueue:

## ack = [src,tag,sender]
if ack[0] == recvreq.source.value and ack[1] == recvreq.ta g:

recvreq.trans_sender = ack[2]
recvreq.trans_status = trans_stat_work
self.recvqueue.remove(ack)
DBG('trans', 'recv request is confirmed= %s', recvreq)
break

## no ack yet, it is a new recv request
if recvreq.trans_status == trans_stat_new :

self.newrecv.append(recvreq.trans_id)

def sendready(self, dest, tag, recver):
sendreq = None
found = False
## match the first new send request
for ns in self.newsend:

sendreq = self.transmap[ns]
if sendreq.dest.value == dest and sendreq.tag == tag:

sendreq.trans_recver = recver
sendreq.trans_status = trans_stat_work
found = True
break

if not found:
## save the post for future send requests
DBG('trans', 'unknown recvpost: dest=%s, tag=%s', dest, t ag)
self.sendqueue.append([dest,tag,recver])
sendreq = None

else:
DBG('trans', 'send request is confirmed= %s', sendreq)
self.newsend.remove(sendreq.trans_id)

return sendreq

def recvready(self, src, tag, sender):
recvreq = None
found = False
for ns in self.newrecv:

recvreq = self.transmap[ns]
## match the first new recv request
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if recvreq.source.value == src and recvreq.tag == tag:
recvreq.trans_sender = sender
recvreq.trans_status = trans_stat_work
found = True
break

if not found:
## save the post for future recv requests
DBG('trans', 'unknown sendpost: src=%s, tag=%s', src, tag )
self.recvqueue.append([src,tag,sender])
recvreq = None

else:
DBG('trans', 'recv request is confirmed= %s', recvreq)
self.newrecv.remove(recvreq.trans_id)

return recvreq

def getreq(self, trans_id):
return self.transmap[trans_id]

def unregister(self, request):
try:

del self.transmap[request.trans_id]
except KeyError:

pass

C.7 rMPI Optimized Collectives [optmpi.py]

import sys, time, math, string, pickle, random
from river.core.vr import VirtualResource
from river.core.debug import *
from river.core.console import *
from nbmpi import *

## inherit from nonblocking mpi
## Optimized Collective operations
class MPI_OPTCC( MPI_NB ):

""" the dissemination algorithm
It uses ceiling(lgp) steps. In step k, 0 <= k <= (ceiling(lgp) -1),
process i sends to process (i + 2ˆk) % p and receives from proce ss
(i - 2ˆk + p) % p.
"""
## override MPI_Barrier
def MPI_Barrier( self, comm ):

sendbuf = [1]
recvbuf = [0]

msgUid = self.getMsgUid()
status = MPI_Status()

i = self.rank.value

p = comm.size()
steps = int(math.ceil(math.log(p, 2)))
for k in xrange(steps):

dest = (i + 2**k) %p
src = (i - 2**k + p) %p
recv_request = MPI_Request()
self.MPI_Irecv(recvbuf, 1, MPI_INT, MPI_Int(src), msgUi d, comm,

recv_request)

self.MPI_Send(sendbuf, 1, MPI_INT, MPI_Int(dest), msgUi d, comm)

self.MPI_Wait(recv_request, status)

return MPI_SUCCESS

def MPI_Reduce_Rabens( self, sendbuf, recvbuf, count, dat atype, operator,
root, comm ):

root = self.normalize_rank(root)
# use Recursive Halving Reduce Scatter
self.MPI_Reduce_scatter_RecHalv( sendbuf, recvbuf, cou nt, datatype,

operator, comm )
# binomial gather
MPI_Gather_Binomial(sendbuf, sendcount, sendtype, recv buf, recvcount,

recvtype, root, comm)

def MPI_Gather_Binomial( self, sendbuf, sendcount, sendt ype,
recvbuf, recvcount, recvtype, root, comm ):

root = self.normalize_rank(root)
size = comm.size()
rank = comm.uuidToRank(self.uuid)

status = MPI_Status()
msgUid = self.getMsgUid()

# number of steps
steps = int(math.ceil(math.log(size, 2)))
# in case root is not 0
taskRankValue = (rank.value-root.value)%size

recvbuf[rank.value*sendcount:(rank.value+1)*sendcou nt] = sendbuf

for step in xrange(steps):
taskPair = taskRankValue ˆ (2 ** step)
# real rank of the pair node
pair = (taskPair+root.value)%size

if taskPair >= size:
# pair doesn't exist
continue

count = 2**step * sendcount
if taskRankValue > taskPair:

sendnode = rank.value
else:

sendnode = pair
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if (sendnode*sendcount + count) > len(recvbuf):
count = len(recvbuf) - sendnode*sendcount

sendIndex = sendnode * sendcount

if rank.value == sendnode:
## send data
self.MPI_Send((recvbuf, sendIndex), count, sendtype,

MPI_Int(pair), msgUid, comm)
## once data is sent, the node is not in computation anymore
break;

else:
## recv data
self.MPI_Recv((recvbuf, sendIndex), count, sendtype,

MPI_Int(pair), msgUid, comm, MPI_Status())

return MPI_SUCCESS

def MPI_Reduce_Binomial( self, sendbuf, recvbuf, count, d atatype, operator,
root, comm ):

root = self.normalize_rank(root)

if not operator in mpi_ops:
raise TypeError, 'invalid operator'

op = mpi_ops[operator]

size = comm.size()
rank = comm.uuidToRank(self.uuid)

#copy sendbuf to recvbuf
recvbuf[:] = sendbuf[:]
# Temporary list buffer for the operands
temp = [ mpi_zero_values[datatype] ] * count
status = MPI_Status()
msgUid = self.getMsgUid()

# number of steps
steps = int(math.ceil(math.log(size, 2)))
# in case root is not 0
taskRankValue = (rank.value-root.value)%size

for step in xrange(steps):
taskPair = taskRankValue ˆ (2 ** step)
# real rank of the pair node
pair = (taskPair+root.value)%size
if taskPair >= size:

# pair doesn't exist
continue

elif taskRankValue > taskPair:
## send data
self.MPI_Send(recvbuf, count, datatype, MPI_Int(pair),

msgUid, comm)
## once data is sent, the node is not in computation anymore
break;

else:
## recv data

self.MPI_Recv(temp, count, datatype, MPI_Int(pair), msg Uid,
comm, status)

## do the operation
for i in xrange(count):

recvbuf[i] = op(recvbuf[i],temp[i])

del temp
return MPI_SUCCESS

## ToDo: use nonblocking p2p instead
def MPI_Reduce_scatter_RecHalv( self, sendbuf, recvbuf, count, datatype,

operator, comm ):
## recursive halving
## this only works with power-of-2 processors
size = comm.size()
power2 = math.floor(math.log(size, 2))
steps = int(math.ceil(math.log(size, 2)))
if power2 != steps :

return MPI_ERR_OTHER

if not operator in mpi_ops:
raise TypeError, 'invalid operator'

op = mpi_ops[operator]

msgUid = self.getMsgUid()
status = MPI_Status()

## only allocate tempbuf once
tempbuf = [ mpi_zero_values[datatype] ] * (size/2 * count)
for step in xrange(steps):

## halving the distance
distance = size/2**(step+1)
# the node to exchange data
# use XOR to find the pair node
pairNode = self.rank.value ˆ distance
# sendIndex depends on the pair node's "group"
sendIndex = (pairNode/distance) * count
sendSize = distance * count

if self.rank.value < pairNode :
self.MPI_Send((sendbuf, sendIndex), sendSize, datatype ,

MPI_Int(pairNode), msgUid, comm)
self.MPI_Recv(tempbuf, sendSize, datatype, MPI_Int(pai rNode),

msgUid, comm, status)
else:

self.MPI_Recv(tempbuf, sendSize, datatype, MPI_Int(pai rNode),
msgUid, comm, status)

self.MPI_Send((sendbuf, sendIndex), sendSize, datatype ,
MPI_Int(pairNode), msgUid, comm)

# print "tempbuf=", tempbuf
# perform the predefined operation
# operation index also depends on the node's "group"
optIndex = (self.rank.value/distance) * distance * count
for i in xrange(sendSize):

sendbuf[optIndex+i] = op(sendbuf[optIndex+i], tempbuf[ i])
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## halving the tempory buffer
del tempbuf[(sendSize/2):]

## recvbuf is one chunk of sendbuf
recvbuf[:] = sendbuf[self.rank.value*count : (self.rank .value+1)*count]

return MPI_SUCCESS

def MPI_Alltoall_Bruck( self, sendbuf, sendcount, sendty pe,
recvbuf, recvcount, recvtype, comm ):

size = comm.size()
rank = comm.uuidToRank(self.uuid)

status = MPI_Status()
msgUid = self.getMsgUid()

## local ratation
recvbuf[:] = sendbuf[rank.value*sendcount:] + \

sendbuf[:rank.value*sendcount]

steps = int(math.ceil(math.log(size, 2)))
for step in xrange(steps):

destNode = (rank.value + 2 ** step) % size
srcNode = (rank.value - 2 ** step) % size

sendIndex = 2**step * sendcount
sendSize = 2**step * sendcount
sendchunk = []
while (sendIndex<len(sendbuf)):

if (sendIndex+sendSize > len(sendbuf)):
sendSize = sendIndex+sendSize - len(sendbuf)

send_request = MPI_Request()
recv_request = MPI_Request()
## it is not safe to use recvbuf for both Isend and Irecv
self.MPI_Isend((recvbuf, sendIndex), sendSize, sendtyp e,

MPI_Int(destNode), msgUid, comm, send_request)
self.MPI_Irecv((recvbuf, sendIndex), sendSize, recvtyp e,

MPI_Int(srcNode), msgUid, comm, recv_request)

self.MPI_Wait(send_request, status)
self.MPI_Wait(recv_request, status)

sendIndex = sendIndex + 2**(step+1) * sendcount

## inverse rotation
recvbuf.extend(recvbuf[:(rank.value+1)*sendcount])
del recvbuf[:(rank.value+1)*sendcount]
recvbuf.reverse()

return MPI_SUCCESS

def MPI_Allgather_Dissem( self, sendbuf, sendcount, send type, recvbuf,
recvcount, recvtype, comm ):

msgUid = self.getMsgUid()
size = comm.size()
power2 = math.floor(math.log(size, 2))
steps = int(math.ceil(math.log(size, 2)))
statuses = [MPI_Status(), MPI_Status()]

## copy self sendbuf to end of recvbuf
## recvbuf is filled upward
recvbuf[(size-1)*sendcount:] = sendbuf
for step in xrange(steps):

if (step == power2):
## the last stage for non-power of 2
sendIndex = 2**step * sendcount
recvIndex = 0
sendcnt= (size - 2**step) * sendcount

else:
sendIndex = (size - 2**step) * sendcount
recvIndex = (size - 2**(step+1)) * sendcount
sendcnt = (2**step) * sendcount

destNode = (self.rank.value + 2**step) % size
srcNode = (self.rank.value - 2**step) % size

send_request = MPI_Request()
recv_request = MPI_Request()

## send continguous
self.MPI_Isend((recvbuf, sendIndex), sendcnt, sendtype ,

MPI_Int(destNode), msgUid, comm, send_request)
self.MPI_Irecv((recvbuf, recvIndex), sendcnt, recvtype ,

MPI_Int(srcNode), msgUid, comm, recv_request)

self.MPI_Waitall(2, [send_request, recv_request], stat uses)

## change the order
## last rank will be in order
if self.rank.value < (size-1):

## move one chunk each time
for i in xrange(size - self.rank.value - 1):

recvbuf.extend(recvbuf[:sendcount])
del recvbuf[:sendcount]

return MPI_SUCCESS

def MPI_Allgather_Bruck( self, sendbuf, sendcount, sendt ype, recvbuf,
recvcount, recvtype, comm ):

msgUid = self.getMsgUid()
size = comm.size()
power2 = math.floor(math.log(size, 2))
steps = int(math.ceil(math.log(size, 2)))
statuses = [MPI_Status(), MPI_Status()]
## copy self sendbuf to recvbuf
recvbuf[0:sendcount] = sendbuf
## always send from first one
sendIndex = 0
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for step in xrange(steps):
recvIndex = 2**step * sendcount
if (step == power2):

## the last stage for non-power of 2
sendcnt= (size - 2**step) * sendcount

else:
sendcnt = 2**step * sendcount

destNode = (self.rank.value - 2**step) % size
srcNode = (self.rank.value + 2**step) % size
send_request = MPI_Request()
recv_request = MPI_Request()

self.MPI_Isend((recvbuf, sendIndex), sendcnt, sendtype ,
MPI_Int(destNode), msgUid, comm, send_request)

self.MPI_Irecv((recvbuf, recvIndex), sendcnt, recvtype ,
MPI_Int(srcNode), msgUid, comm, recv_request)

self.MPI_Waitall(2, [send_request, recv_request], stat uses)

## change the order
if self.rank.value > 0:

for i in xrange(size - self.rank.value):
recvbuf.extend(recvbuf[:sendcount])
del recvbuf[:sendcount]

return MPI_SUCCESS
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