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Abstract

River is a Python-based framework for rapid prototypingedfable parallel and distributed run-
time systems. The current quest for new parallel programgmindels is hampered, in part, by the time and
complexity required to develop dynamic run-time suppod agtwork communication. The simplicity of
the River core combined with Python's dynamic typing andaie® notation makes it possible to go from a
design idea to a working implementation in a matter of daysven hours. With the ability to test and throw
away several implementations River allows researchergiioe a large design space. In addition, the River
core and new extensions can be used directly to develodedaadl distributed applications in Python. This
thesis describes the River system and its core interfagerémess creation, naming, discovery, and message
passing. We also discuss various River extensions, suckmaste Access and Invocation (RAI) extension,
the Trickle task-farming programming model, and a River M®plementation.
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Chapter 1

Introduction

The River framework [66] is a parallel and distributed paygming environmentwritten in
Python [62] that targets conventional applications andlfgiscripting. The River core interface is based on
a few fundamental concepts that enable the execution of aodeultiple machines and provide a exible
mechanism for communication among them. Compared to pus\parallel and distributed programming
systems, River is unique in its integration with a dynanijelped scripting language, its simplicity in
implementation and usage, and its ability to be used as atgping tool for new parallel programming
models. This thesis describes the River programming madelge of River to construct applications and
new programming models and the River implementation. Iritiaaig we present both a quantitative and a
gualitative evaluation of River and our River extensions.

The main features of River include a simple programming madesy program deployment, and
a novel communication mechanism. The goal is to allow a usieverage multiple machines, i.e., desktops
and laptops, to improve the performance of everyday comgutsks. Parallel application programming
can be done directly with the River API or simpli ed furthey lnsing higher-level constructs provided by
River extensions.

A River application is made up of one or more Virtual ResosrféRs), which are similar to
processes. By naming Virtual Resources with universallgumidenti ers, or UUIDs, River isolates name
references from physical identi ers (such as an IP addresspcket and le descriptors. Thus, to com-
municate among themselves Virtual Resources need to @adh other only by their UUID. No other
identi cation information (such as an IP address or a hasigis necessary.

We have created a novel communication mechanism calledr &lgdble Messaging (SFM) for
basic communication between processes, both at the systapalication levels. The main feature of this
mechanism is the ability to easily send dynamically-typadbaite-value pairs from one Virtual Resource

IRiver is a parallel and distributed system but for brevitywse the ternparallel in this thesis to mean parallel and distributed.
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to another. All the internal communication within Riverchuas machine discovery, allocation, and process
deployment is achieved through the use of SFM. Any possibteiats between system and application
packets are avoided by giving application processes diftenames (UUIDs) from the system processes.
The exibility and ease of use of this model combined with mriul and elegant semantics of the Python
programming language made the rapid prototyping of ouresystxtremely ef cient and allowed us to
explore many different approaches for which we otherwisaldraot have had time.

Another important goal of River is support of rapid protatyp of new parallel and distributed
programming models. For instance, the exibility affordbg the River core has allowed us to quickly
implement several small to medium scale extensions to therRiamework that provide run-time support
for different programming models. In particular, the rsttension to River we developed is Remote Access
and Invocation (RAI), which provides transparent accessrwote methods and data for River applications.
River makes it easy not only to develop and debug extenshansalso to implement several variations of
an extension. For example, we have used an object-oriepf@dach to implement MPI [45, 48] on top of
the River core. Our version allows for incorporating an @sing amount of functionality by subclassing
different feature sets. The base implementation can bedetkto support derived data types, non-blocking
communication, and optimized collective communicatiorddionally, our Trickle [8] extension for task
farming and work distribution has gone through severahtiens in which we have experimented with
different semantics.

The implementation of the River run-time system consistsRiver Virtual Machine (VM), which
provides support for communication, discovery, alloaatiand deployment; the Virtual Resource (VR) base
class, which serves as the primary River API; and our mesgaigamework, composed of serialization
routines and a message queue. Underneath the hood the Rivier 80mprised of several building blocks
that work together to support running VRs. We have a uni etmoek connection model that can utilize
multiple network interfaces and protocols, a connectiacht® mechanism to support an arbitrary number
of simultaneous connections, a name (UUID) resolutionqualt and low-level data transmission routines.
Our messaging framework automatically handles all thelkwe! details, such as serializing data, and allows
a programmer to send structured data without any additiotexface speci cation.

We present a quantitative evaluation of River using bothrorilenchmarks and small-scale appli-
cations. It is possible to write sophisticated paralleli®yt applications using the River core and the River
extensions, and such applications can be used to evaldgeedi programming models or to solve real
problems. Of course, such programs will be subject to Pyslsmguential performance. To improve perfor-
mance, the River core and extensions can be coupled withgggbrmance C and C++ based libraries such
as NumPy [47] and the Python Imaging Library [52]. Becausehmarks alone do not properly convey the

advantages of River as a framework for building distribuggstems and programming models, we provide
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a qualitative evaluation as well. Trickle, for example, bagn used locally to teach parallel programming,
as well as for movie creation and data analysis.

The rest of this thesis is organized as follows. Chapter 2iges motivation for River and surveys
previous developments in the eld of distributed programgnlanguages and libraries. Chapter 3 explains
the River Core APl and demonstrates how to use it to devektpilalited applications. Chapter 4 discusses
our implementation of the River run-time system and its congmts. The next three chapters serve as
small case studies for using River to develop higher-levatfionality and to prototype different parallel
programming models. Chapter 5 presents the Remote Accddswatation (RAI) framework, an extension
to the River Core. Chapter 6 discusses the Trickle programgmmodel. Chapter 7 presents the design and
implementation of our River-based MPI library. Finally, &tter 8 presents some concluding remarks and

offers direction for future work.



Chapter 2

Background

In designing River we leverage past and current develomnienthe eld of parallel and dis-
tributed computing. This chapter provides the context far ideas behind River. First, we provide our
motivation for the creation of the River framework. Then wevey past work in the eld of distributed
languages and libraries. We also present different comration mechanisms that have been developed for
use in distributed systems. Finally, we discuss Python)ahguage we chose for the implementation of

River, and the important features it offers for distribupgdgramming.

2.1 Motivation

In accordance with Moore's law the number of transistors @nagessor increases exponentially
by doubling every two years [44, 43]. At the same time, precesechnology appears to have reached
a frequency limit. As such, performance improvements awe olotained by packing multiple cores on a
single CPU. Software, however, has not kept pace with hareladvancements and very few applications
have progressed beyond sequential computing to exploipainallelism present in today's desktops and
laptops. Applications must now maximize usage of all alddaores to achieve the best performance.

In the future we can only expect the utilization/idle ratibget worse as more and more cores
are packed into a single chip. Application programmerszedhey have to utilize multiple processors, yet
are reluctant to parallelize their software because mmtbgramming is dif cult and brings with it new
issues, problems, and complexities not present in segligngramming. There is no silver bullet yet; the
holy grail of automatically parallelizing an arbitrary smaptial program has not been attained. No matter
which language or library is used for the development of alfemprogram, a programmer still requires the
knowledge and skills of operating in a parallel environm&here many things are happening at once, be it

multiple threads on a single system or multiple processes@uster.

4



While there exist several languages and libraries for frsatienti c computing, they have not
gained traction for general purpose productivity appit@a due to programming complexity and signi -
cant administrative requirements. The solution is to nd tiext set of parallel programming models or
incrementally improve current ones, as well as provide gkmand robust underlying framework to al-
low developers to take advantage of inherent parallelistheir systems (networked desktops and laptops)
without requiring dedicated supercomputers and staff ppstt them.

Simplifying parallel programming of large scale compuias is an area of vital importance to the
future of supercomputing. Conventional clusters, big ,jrgrds, and now multi-core personal computers
require increased programmer productivity in order toctifely harness multiple processors. In addition
to the general challenge of writing correct parallel progsanewly-trained parallel programmers are forced
to contend with languages (like C and Fortran) that seemifiwvercompared to those they have been trained
in, such as Java or Python. In order to bridge this gap, neallpalanguages need to provide broad-market
features that do not undermine the goals of parallel comgutl6]. Thus, much effort in the research
community is focused on improving development languagesdisiributed run-time systems.

While ultimately using conventional languages for implenireg production systems is necessary
for performance, our belief is that using such languagegifototyping can restrict exploration of a larger
set of designs. We speculate that the current practice f@llebhlanguage and library design, however,
has typically involved a long development cycle, consgstri a speci cation by a committee or a group,
a prototype in a conventional language, feedback from amqmidw@ment upon the prototype. Going from
a speci cation to a prototype implementation is a time-agnsg and error-prone task if conventional
languages (e.g., C and Java) and conventional commumaazhanisms (e.g., sockets and MPI message
passing) are used. This is a key problem and a major roadidqudrallel language development. Our belief
based on empirical experience is that prototyping with eotienal languages results in design decisions
locked in at an early stage because making changes to thetareun-time system can be a substantial
engineering effort. Furthermore, our belief is based orfakhethat using a higher-level language results in
fewer lines of code and therefore less complexity.

However, much can be learned from a working implementagspecially one that can run real
applications on real parallel hardware. It is possible tiddiqorototypes in existing parallel and distributed
languages, but such languages are often designed to suippaktvelopment of applications, not new par-
allel constructs and interfaces. By decreasing the timediofype and experiment with new ideas via a
working system, more alternatives can be examined anddtegteshorter feedback loop can open up a
much larger design space.

The River framework was developed to allow an applicatioaasily exploit multiple CPUs and

systems for increased performance and reliability. Wentideally constrained the core of the system
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to have a small and easy to use interface. River's other got facilitate rapid prototyping of parallel
programming systems and constructs. We implemented Rixteely in Python [62], chosen for its high
productivity and rapid development characteristics.

In some sense, River is another attempt to bring supercangptd the masses. Our rst expe-
rience with popularizing supercomputing was the FlashMadng[24] at the University of San Francisco,
which assembled a massive supercomputer from 700 desktdgatops. Unlike traditional supercomput-
ers, which are expensive and not accessible to the gendstid pa FlashMob supercomputer is temporary,
made up of ordinary computers, and is built to work on a spegioblem. This elaborate experiment proved
that instant supercomputing is viable.

River, however, takes a somewhat different approach. ikasElashMob, we want to bring dis-
tributed computing to the people, but rather than createsiveainstant supercomputers, we aim to provide
a usable parallel framework for an average user who hasatzesfew desktops and laptops. We want to
allow the user to exploit the inherent parallelism presarnbday's systems. Our goal is to give the user a
programming model and run-time system that enable pamibgramming with little dif culty.

River is based on a few fundamental concepts that enablex#toeiiion of code on multiple virtual
machines and provide a exible mechanism for communicatiimese concepts are supported by the River
run-time system, which manages automatic discovery, atimmemanagement, naming, process creation,
and message passing. The simplicity and elegance of the &ike&combined with Python's dynamic typing
and concise notation make it easy to rapidly develop a yaoiparallel run-time systems.

River introduces a novel dynamically typed communicati@chanism, calleduper exible mes-
sagingthat makes it easy to send arbitrary data as attribute-y@dirs and can selectively receive based on
matching attribute names and subsets of attribute vallBsThis powerful mechanism eliminates the need
to de ne a xed packet structure or specify xed remote irfeares.

The rest of this chapter describes previous and related thatkwe leverage in the eld of dis-
tributed languages and libraries, various communicatienlranisms available to parallel programmers, and
parallel and distributed extensions developed speciycilt the Python language.

2.2 Parallel and Distributed Languages

The design of River is in uenced by past work on the design mfgpamming languages for
parallel and distributed computing. In [4] Badt al provide a comprehensive survey of various research
languages and libraries. Albeit this work was published989, the issues discussed are still pertinent in
the eld of distributed computing today. A distributed countmg system, as de ned by Bal, consists of

multiple autonomous processors that do not share primangang but cooperate by sending messages over
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a communications network.

Message passing as a programming language primitive waslinted by C.A.R. Hoare in a lan-
guage called Communicating Sequential Processes (CSP)TB@ CSP model consists of a xed number
of sequential processes that communicate only throughsgnous message passing. This resulted in many
subsequent languages supporting some form of messagagqdis Occam [41]. These languages were
used for programming distributed systems as well as shaedory multiprocessors. The next step was
the development of higher-level paradigms and interpso@snmunication, such as rendezvous, remote
procedure call (RPC), and distributed data structuresR#jer continues this tradition by adopting message
passing as the basic communication primitive. Like pastesys, River builds more advanced constructs,
such as RPC, on top of message passing.

However, in CSP all interprocess communication is donegusimchronous receive and send.
Both simple and structured data may be communicated as Iorigeavalue sent is of the same type as
the variable receiving it. The structured data can be givelrae. An empty constructor may be used
to synchronize two processes without transferring any datd, i.e., with an empty message. River (and
our SFM framework speci cally) extends this model by makimgeives asynchronous and removing all
restrictions on the data types. Any type (both simple angtaired) can be named and communicated.

Additionally, both CSP and Occam are static in the sensetltiegtdo not allow dynamic creation
of new processes during the execution of a program. Rivewalmachines to be discovered dynamically,
thus enabling the addition of new processes during progratigion. We have designed a exildisscover-
allocate-deploymechanism, described in Chapter 3, to support this idea.

In most procedural languages for distributed programnpagallelism is based on the notion of a
process [4]. For example, the Network Implementation Laiggu(NIL) [71] system consists of a network
of dynamically created processes that communicate onlydssage passing over communication channels.
In NIL, a process is not only the unit of parallelism but alke unit of modularity. This is similar to the
Virtual Resourcea process-like abstraction found in River. Similar to Ndlach process in River may also
be a different module, providing a unit of modularity.

For situations where message passing is inadequate asdicecbenmunication primitive, other
higher-level mechanisms may be employed. For instanceepsors may communicate through some gen-
eralized form of remote procedure call [10]. RPC was rstadguced by Brinch Hansen for his language
Distributed Processes (DP) [28]. DP processes commurigatalling one another's common procedures.
Another possibility is to use a distributed data structee example of this is Linda [15], which supports
an abstract global memory called theple Spacerather than using shared variables or message passing for
communication.

Numerous languages support object-based distributed utimgpsuch as Emerald [35] and
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Orca [3]. In Emerald, objects are units of programming arsdrithution and the entities between which
communication takes place. The language is strongly typedas explicit notions of location and mobil-
ity. Emerald supports concurrency both between objectsnatiih an object. Orca [3], on the other hand,
allows processes to share variables of abstract data tgpgc(s). Orca provides an explicit fork primitive
for spawning a new child process and passing parameters tteth process.

River also borrows a lot of concepts from the Synchronizimgd®urces (SR) language, developed
for programming distributed operating systems and apjpdica [1]. Like SR, River consists of one or more
parametrizedesourceswhich constitute the main building block of the system. tithbcases a resource is
a module run on one physical node. Resources are dynamacabyed and optionally assigned to run on a
speci ¢ machine. SR resources interact by meangpafrations which generalize procedures. Operations
are invoked by means of synchronatal or asynchronousendand implemented by procedure-likeocs
or by in statements. In contrast, River Virtual Resources (VRs)manicate by explicit message passing
usingsendandrecv. The VM and invocation handles concept from our Trickle feavork (described in
Chapter 6) are similar in function to VM identities and opina capabilities found in SR.

SR's input statements combine aspects of both Adalgctstatement [68] and CSP's guarded
input statement. However, both SR's input statements amdrBiSFM model are more powerful, since
the expression may reference formal parameters and selardin be based on parameter values. Unlike
SR, which is a standalone distributed language and rungisg&m, River uses a general-purpose language
and targets conventional computer systems. Also, the deftipk-deploy cycle in SR is somewhat heavy-
weight, whereas River's use of Python allows the programmémmediately run the code without any
intermediate steps. Additionally, SR is not object-orsghtand not as portable as Python or Java.

The JR [38] language extends Java [27] with the concurrerayefprovided by SR in a manner
that retains the feel of Java. JR is intended as a researcteacihing tool. Since JR extends the syntax of
Java, and requires an extra step to translate JR programstamtdard Java code. Unlike JR, River is built
in a conventional language and does not introduce any netsywhich makes it an ideal platform for
developing and prototyping distributed systems and agiitins.

Several other extensions to Java attempt to modify its aoecay model. For example, Ajents [32]
provides remote object creation, asynchronous RMI, andobbjigration through a collection of Java
classes without any maodi cation to the language. JavaP@&1y allows transparent remote objects and
instantiation on remote hosts. Communicating Java Thri2#]sextends the Java concurrency model by
providing communication between threads based on the Cgp#Badigm.

The complexities and limitations found in the dominant kaages and interfaces for parallel com-
putation — Fortran, C, and MPI — have sparked a quest for tkisgemeration of HPC development environ-

ments [21, 40]. Recent large-scale efforts include X10trEss, and Chapel. Such languages are attempting
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to make explicit parallel programming more manageable.

X10 [77, 18, 67] is designed speci cally for parallel prograing. It is an extended subset of
the Java programming language, strongly resembling it istraspects, but featuring additional support
for arrays and concurrency. X10 uses a partitioned globdiess$ space model. It supports both object-
oriented and non-object-oriented programming paradidhis still under development but several releases
are available.

Fortress [25] is a draft speci cation for a programming laage for high-performance compu-
tation that provides abstraction and type safety on par middern programming language principles and
includes support for implicit parallelism, transactiomslatatic type checking. However, as of the writing
of this thesis, it has not progressed beyond a referencepiater implementation.

Chapel [17, 13, 16] is designed to serve as a parallel pragiagrmodel that can be used on
commodity clusters and desktop multicore systems. Chajpgasts a multithreaded execution model via
high-level abstractions for data parallelism, task patialin, concurrency, and nested parallelism. It strives
to vastly improve the programmability of large-scale patalomputers while matching or beating the per-
formance and portability of current programming modele B&PI. A prototype compiler is currently avail-
able.

We believe that these next-generation HPC developmentaemaents could greatly bene t from
the River framework, as it could be used for rapid prototgpamd testing of new parallel programming
constructs and interfaces. Furthermore, River opens umlésgn space and shortens the development

cycle, allowing programmers to experiment with a wide Jsriaf approaches.

2.3 Communication Libraries and Mechanisms

Interfaces for data communication are crucial to the dgraknt and execution of distributed-
memory programs. As such, a multitude of communication raeidms are available to programmers.
Simple communication actions can be easily expresseddhréunction calls of standard communication
libraries, such as the ubiquitous sockets interface for/TRCF0]. It is provided by most operating systems
and is exposed as a higher-level module in most programraimguiages (e.g., the standard Pytbarket
module [5] and the Javieet.Socket  class [31]). However, problems arise, for example, whenoagss
wants to selectively receive a message from one of a numbmhef processes, where the selection criteria
depends on the state of the receiver and the contents of theage [4].

As the operating system does not know how data structureagpresented, it is unable to pack a
data structure into a network packet. Higher-level mid@leasymechanisms such as remote procedure call
and remote method invocation are built on top of a socke&sfmte. Such mechanisms include Sun RPC,
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Java RMI, CORBA remote objects, SOAP, and XML-RPC [9].

Java provides a message service API [33] that allows poipbint and publish/subscribe messag-
ing. This support, however, is directed at loosely-couatkrprise solutions, rather than tightly-coupled
concurrent programs. Message destinations are createthaintkined using administrative tools and, as
such, cannot be considered a language-level mechanisheyaseguire the programmer to work outside of
the language.

CORBA [19] provides push/pull messaging through event okl Its greatest strengths are its
language and architecture independence. CORBA is oftemh fasdoosely-coupled distributed programs,
however, it requires a separate interface de nition andgesgonding compiler to maintain language inde-
pendence.

In high-performance computing, the Message Passing aueMPI) [45, 48] provides a standard
set of mechanisms for point-to-point and collective comitation. Finally, as surveyed in [4], several
parallel and distributed programming languages incotpadadicated syntax and semantics for achieving
communication between remote processes.

All existing mechanisms are useful in appropriate contarid they all have advantages and dis-
advantages. Our observation is that the low-level mechenijsrovide simplicity in concept, but require
detailed handling of data. Likewise, the higher-level natdbms hide some of the complexities of the un-
derlying low-level mechanism, but introduce new burdenshenprogrammer. For example, TCP sockets
require a receiver to handle partial reads, a situation Whes data is available than has been requested.
Also, explicit serialization is required for sending stured data. In contrast, complete objects can be ac-
cessed using a remote object system such as Java RMI [33). syatems require some form of interface
de nition, separate compilation tools, and a con gured @xion environment. Elegant mechanisms exist in
dedicated distributed programming languages, but theigeiss limited because their implementations are
typically not widely supported and mainstream developensl to use more general purpose programming
languages.

A message received during the course of execution of a prognay come from an arbitrary
source. Like mostimperative programming languages, we fizen of aselectstatement [68] as a construct
for controlling such non-determinism [4]. Our novel comrmation mechanism, SFM, allows programmers
to selectivelyreceive messages based on not only their source but anypztteeneters speci ed within the
message.

The SFM model provides a simple way to send arbitrary, dyoalfyityped messages between re-
mote processes. Like traditional low-level mechanism#$y @Fows for the explicit transfer of data between
processes, and like higher-level mechanisms, SFM autoafigtiserializes structured data. SFM handles
all the low-level details and allows a programmer to sendgcstired data without additional interface spec-
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i cation. In SFM the location in the source code wheend() is invoked serves as the speci cation. The
sender and receiver implicitly agree on the type of datasfmared. SFM can be viewed as an extension
of function invocation semantics in dynamically typed laages. In such languages, the caller and callee
agree on the types of data passed in and returned by convehtmstatic type checking is performed. Type

errors are determined at run time.

2.4 The Python Language

The River run-time system, as well as its applications, ariétem in Python [62], a general-
purpose high-level programming language. Its design pbpby emphasizes code readability. Python's
core syntax and semantics are minimalistic, while the stethtibrary is large and comprehensive. Python
supports multiple programming paradigms (primarily obj@gented, imperative, and functional) and fea-
tures a fully dynamic type system and automatic memory nmemegt, similar to Perl, Ruby, Scheme, and
Tcl.

Python has gained in popularity due, in part, to its objearded programming model and
system-independent nature. However, its concurrency hisamt very exible, and provided mostly by
third-party packages. Python does support threads, buaatipe they do not improve performance as only
one thread at a time may hold Python's global interpretek.loRiver's goal is to extend Python's rapid
development capabilities to distributed systems. We aifadiitate shorter design/implementation cycles
by opening up the design space and enabling prototypes torrueal hardware. This allows programmers
to quickly demonstrate scalability and feasibility.

Python uses dynamic typing and a combination of referengstow and a cycle-detecting garbage
collector for memory management. Our RAI (Remote Accesdmvatation) extension takes advantage of
the garbage collector to deallocate remote objects whenltival references go out of scope. An important
feature of Python is dynamic name resolution (late bindindfich binds method and variable names during
program execution. For a thorough introduction to Pythoa refer the reader to [5]; however, we believe
that there are several language features that merit fuetk@anation: keyword arguments, introspection,
and the Python object model.

The River framework, and speci cally the SFM mechanismiesebn Python's support for key-
word arguments passed to a function. In general, an arguisepassed to a function must have any posi-
tional arguments followed by any keyword arguments of thenfoame=value , where the keywords must
be chosen from the formal parameter names. It is not impowaether a formal parameter has a default
value or not. No argument may receive a value more than orecéoamal parameter names corresponding

to positional arguments cannot be used as keywords in the ealts [63].
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When a nal formal parameter of the forftkwargs is present, it receives a dictionary contain-
ing all keyword arguments except for those corresponding flarmal positional parameter. This may be
combined with a formal parameter of the forangs which receives a tuple containing the positional argu-
ments beyond the formal parameter list. This makes it ptessibcapture arbitrary attribute-value pairs by

declaring a function that takes a single argum&ttvargs . Usage of this feature is shown in Figure 2.1.

def foo(*args, **kwargs):
print args, kwargs

w

2,3) {4
{y: 8, x: 9, 2% 7}
2, 3) {y: 8 x:9 2.7}

Figure 2.1: Using Python Keyword Arguments

Another important feature of the Python language is its ®ythbject model [61]. All data in a
Python program is represented by objects or by relationsdmst objects. (In conformance to Von Neu-
mann's model of a stored program computer, code is also septed by objects.) Every object has an
identity, a type, and a value. An object's identity neverrais once it has been created; one may think
of it as the object's address in memory. An object's type eiees the operations that the object supports
and also de nes the possible values for objects of that tyfiee value of some objects can change. Ob-
jects whose value can change are said to be mutable; objbosewalue is unchangeable once they are
created are called immutable. Some objects contain refeseto other objects; these are called containers.
Examples of containers are tuples, lists and dictionaries.

The two types used extensively in River are mapping typescaiidble types. Mapping types
(dictionary is the only current example) represent nitéssaf objects indexed by arbitrary index sets. The
subscript notatiora[k] selects the item indexed lkyfrom the mapping; this can be used in expressions
and as the target of assignments. To support this interfackass must de ne two methods: getitem__
to get an item, and_setitem__ to set an item. Several classes in River de ne this intertaue serve as
containers for other objects.

A callable type is a type to which the function call operat{parentheses) can be applied. These
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are user-de ned functions and methods, as well as class tysed when creating new objects of a class) and
class instances. Class instances are callable only wheteiseehas a call  method;foo(arguments)

is a shorthand fofoo.__call__(arguments) . The Remote Access and Invocation extension, described in
Chapter 5, makes use of this feature to allow function callseonote objects.

A class has a namespace implemented by a dictionary objks @ttribute references are trans-
lated to lookups in this dictionary. When the attribute nasm@ot found there, the attribute search continues
in the base classes. A class may de ne a special methggfattr _ , which will be called upon each
attribute acces$f, the speci ed attribute is not already de ned as a member efdlass or any of its parents.
An exception may be raised to indicate an absence of suébutttr Otherwise, the returned value will be
used as the value of the speci ed attribute. River, and spaty our SFM implementation, described in
Chapter 3, depends on this feature to allow arbitrary atieilmames within a message.

A special Python module calledspect [57] exists to support introspection at runtime. It pro-
vides several useful functions to help get information altiwa objects such as modules, classes, methods,
functions, etc. For example, it can be used to examine thientmof a class or retrieve the source code of
a method. We use this functionality to import code and datariemote Python interpreters in our Trickle
programming model, described in Chapter 6.

With River we are using Python in a novel way to build parallei-time systems. While Python
has proven to be a high-productivity programming languaga wide variety of domains such as web
services, program steering, data analysis, and convetgmipting, due to performance issues it is not
typically used as a systems language. However, Pythonsis®syntax combined with dynamic typing,
built-in data structures, and a rich standard library eeslbhpid program development. Also, because it is
an interpretive language, one avoids the edit, compile cpate: changes are instantaneous. We leverage
all of these bene ts to use Python as a form of executableigp¢ion for run-time systems. Python's
exible syntax and introspection features allow develapter strike a balance between language-based and

library-based programming models.

2.5 Distributed Programming in Python

The standard Python distribution comes with several libraodules for network communication
and Internet protocols, such as tsogket module [64], or thexmlrpclib  module [65]. By themselves,
these modules do not readily allow a programmer to easiligdeand develop parallel Python programs.
As such, there exist several Python extensions designetiot® programs to cooperate in a distributed
environment.

The IPython [49, 50] project is most similar to River, andd@pally the Trickle extension de-
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scribed in Chapter 6. It allows interactive coordinatiorditributed Python interpreters. However, its fea-
ture setis rather large and is aimed at coordination andal@vent of high-performance parallel programs.
Unlike IPython, River is a relatively concise extension distributed programming. We have deliberately
constrained the River programming model to make it easyaimland use. See Section 6.5 for a comparison
of Trickle and IPython.

PYRO [20] brings to Python a more traditional form of distitieéd objects based on a client/server
model, similar to our Remote Access and Invocation (RAleegton presented in Chapter 5. However,
PYRO does not have direct support for asynchronous inatatihd dynamic scheduling. Python support
for the Linda [14] parallel programming model and Tisple Spacelistributed data structure is provided by
the PyLinda [76] module.

Finally, there exist several projects that provide Pythamappers for the standard MPI inter-
face [45, 48]. These include PyMPI [42], MYMPI [37, 36], angp@r [46]. Our implementation of MPI,
built on top of River, is described in Chapter 7. Unlike otRethon MPI interfaces, it is written entirely in
Python and does not require additional libraries, such asnapl&mentation of MPI. At the same time, we
believe that River conforms to the C MPI speci cations mai@sely than the other Python interfaces. See
Section 7.4 for a comparison of rMPI to existing Python-lalgk| interfaces.
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Chapter 3

Programming with River

River is a set of Python classes that provide a core intedadean underlying run-time system.
A River program consists of one or maovetual resourcegVRS) that execute on River virtual machines
(VMs); VMs can exist locally or remotely and VRs are namedhgsiiniversally unique identi ers, or
UUIDs [39]. A VM is simply a Python interpreter running thev@r run-time system. An initiating VR can
discover existing VMs and deploy itself or other VRs ontestdd VMs. Once running, VRs communicate
with each other using a mechanism calkgper exible messagingSFM) for sending and receiving dy-
namically typed messages. This chapter explains theseptsand presents the River programming model
and its API. In addition, several examples are presentedrmdstrate how to build River applications. The

implementation of River is described in Chapter 4.
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3.1 Virtual Resources

A virtual resource (VR) is a process-like abstraction fotiey programs. A VR runs on a River
Virtual Machine (VM), which provides run-time support fogployment and communication. Each VR has
its own thread of execution, its own message queue, and igchaith a UUID (see Figure 3.1). AVR is
speci ed by subclassingirtualResource  ; therefore, a VR encapsulates state using the standardriPyth
class type. The UUID serves as a unique VR identi er, autocally generated at VR creation time. In
practice, a developer never needs to know the UUID valu#;iisean be determined and used implicitly.
Having a soft name, such as a UUID, as opposed to an IP addhesss VRS to potentially migrate between
VMs. While not implemented in the version of River descriliethis thesis, we discuss migration and fault
tolerance in Section 4.5. The message queue associateéacithVR is used to support osuper exible
messagingnechanism, described in Section 3.5, which VRs use to cormangnwith each other.
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Figure 3.1: River Virtual Resource

TheVirtualResource base class provides methods for VM discovery, VR creatiod raessage
passing; Table 3.1 lists all the methods available to Riveg@ammers. Additionally, theirtualResource
class provides several member variables that are of use farttgrammer and are assigned by the run-time

system during VR deployment. These are listed in Table 3.2.
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Method

Description |

send(dest=<UUID> [, <attribute>=<value> ] ...)

Send method. (Section 3.5)

recv([<attribute>=<value>, ...])

Generic receive; returns rst matching messa
Several receive variations exist. (Section 3.5

ge.

discover([<attribute>=<value>, ...])

Discovers VMs running on the local network.
Returns a list of discovered VMs. (Section 3.4

allocate(<vmlist>)

Allocates VMs given in a list for an application.

Returns a list of allocated VMs. (Section 3.4)

deploy(<vmlist>, <module> [, <func> [, <args>]])

Deploys a given module on the VMs in vmlist
Optionally, the function to start execution
may be speci ed, along with its arguments.
Returns a list of VMs on which the module w4
successfully deployed. (Section 3.4)

S

setVMattr(<name>, <value>)

Sets an attribute with a given name and value
on the VM where the current VR is executing

(Section 3.2)

Table 3.1:VirtualResource Methods

| Name | Description

uuid UUID of this VR.

parent UUID of the parent VR, that is, the VR that created this one.
In case this is the launcher, or initiator VR, this valudlise.

args Arguments passed to the VR, either during deployment, or in
the case of the initiator, on the command line.

label Label given to this VMNone by default.

user Username of the VM owner.

Table 3.2:VirtualResource Data Members
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3.2 Virtual Machines

A Virtual Machine is a Python interpreter executing the Ria-time system. Multiple VMs can
be started on the same host to take advantage of multipmoycasd multi-core systems. As each VM is a
standalone process executing a separate Python interpretéern operating systems will execute them in
parallel on different cores or processors. A VM generallgaeites only onapplicationVR at a time: when
that VR nishes, the VM becomes available for another VR. Kwer, there is no hard limit on the number
of VRs that may execute on a VM at the same time since each V&iniits own thread.

Each running River VM maintains a set of key-value attrisutieat provide VM-speci ¢ infor-
mation, such as the VM's current status (e.g., busy or avaiaits operating system, hostname, CPU
speed, amount of memory, and River version. Default ategare presented in Table 3.3. Additionally, a

programmer may set his own attributes usingstt¢Mattr()  method call.

Name | Description \
status | Status of the VM: busy or available.
appVRs| Number of non-system VRs currently running on the VM.
mem Amount of memory on the remote system in megabytes

cpu CPU of the remote system.

cvr UUID of the ControlVR on the remote VM.
host Host name of the remote VM.

label Label given to the remote VM.

pyver Python version of the remote VM.
allVRs | Total count of all VRs (system and app) on the remote VM.
version | River version of the remote VM.

0s Operating systems of the remote VM.
user Username of the VM owner.

caps Capabilities of the remote VM.

arch Platform architecture of the remote VM.

Table 3.3: Default VM Attributes

A special attribute, nameldbel , exists to provide a way to name a VM or a set of VMs. For
instance, a group of VMs running the same application mayabeléd with the name of the application;
this provides a logical separation between multiple grawpsing multiple applications. When all those
VMs are running under the same user, each group may be indepindiscovered by its label; Section 3.7
explains how this can be done. For ease of assigning a lab®lyibe speci ed as a command-line argument
when the VM is started.

Any custom attributes added will also be present in the VNidionary of attributes. Note that
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the names of all custom attributes will appear as the valueaps (short for capabilities), separated by
whitespace. This makes it possible to nd out all the custdiribaite names at once.

3.3 VR Execution

To execute a River program, one or more VMs must be runningllioor remotely on a local
network. The VMs can be running on the nodes of a cluster,laino MPD [11] found in the MPICH
implementation of MPI. River VMs, launched by runniriger  with no arguments, become available for
use by future applicatiods A River program is started by runniniyer  with the name of the application
as an argument. After that, theitiator, a special instance of a VR, begins the computation. Figute 3
shows a possible River setup on a network.
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Figure 3.2: River Virtual Machines on a Network

In the case of the initiator, a new River VM is started and irdragely begins executing the speci-
ed Python source le (River module). On the initiator onlyye execution begins in thve_init() method.
Thevr_init() method is invoked beformain() in the initiator. This approach, in which a VM is created
for the initiator, supports a wide range of startup straegnd allows for custom startup code that can be
easily tailored for different parallel programming modetensions. Ther_init() method is responsible
for locating running River VMs on the network, allocatingeth for an application and deploying itself (or

another module) onto them. Tliscover-allocate-deplogequence is discussed in detail in Section 3.4.

IThe exact startup procedure of River VMs is dependent upemxkcution environment. For instance, they may be launched
as startup items at login on a desktop, or by special managewows on a cluster.
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Non-initiator VRs begin execution at the method speci edidg deployment; by convention this method is
calledmain() .

If the vr_init() method succeeds, it must retufrue . This indicates to the launcher code that
deployment was successful and that the application shooltepd. At this point the launcher invokes the
VR's main() method. After thenain() method completes, the VR nishes executing and exits, teatai

ing the thread. The VM then becomes available for additievadk. Figure 3.3 illustrates this execution

sequence.
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Figure 3.3: River Program in Execution

3.4 Discovery, Allocation, and Deployment

Starting new VRs on remote VMs is a three step sequence vingothree distinct method calls
in this order:discover() , allocate() , anddeploy()

First, thediscover()  call is used to locate available VMs on the network. In itsagétfform,
invoked without arguments, it will return a list &M descriptorsrepresenting all running VMs that are
available for use and are running under the same usernante &sittator. We use the username string,
rather than numeric user id's, to differentiate betweemsjsence the same person may have a different user
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id on two separate systems, but is likely to have the sam@aisgf. The implementation adiscover()
is described in detail in Section 4.4.

A VM descriptor is a dictionary mapping VM attributes to theespective values. The descriptor
contents may be examined to select a subset of VMs, basecewrattributes, for execution. In the case
where a user wants to execute an application on all avaidldiethat were discovered, the list of descriptors
need not be examined or modi ed.

The next step is to pass a list of the VM descriptors corredipgnto the VMs on which the
application will be executed to thedlocate() method. In its simplest form, the call tdlocate() takes
the return value frondiscover()  as its only argument. At this point each remote VM "reservepat”
for a new VR, generates a new UUID for it, and returns the UU#BKoto the allocator to be incorporated
into the VM descriptor. The allocation step allows River toid a possible race condition where multiple
initiators are trying to use the same VM for execution. THecaltion requests are serviced on a rst-come-

rst-serve basis, so if several initiators attempt to afitecthe same VM, only the rst one will succeed

and the rest will fail. Since UUIDs are assigned to partitigpVRs ahead of deployment, each new VR
can be given a list of its peers. This is useful when many VRseaecuting the same code in a SPMD
fashion. Thaallocate() method also returns a list of VM descriptors correspondinipé¢ allocated VMs.

If allocation failed on one or more VMs,RiverError  exception is raised. This allows the programmer to
retry discovery and allocation, perhaps requesting fewdsV

Finally deploy() is invoked to begin execution of VRs on the allocated VMs. Tbgloy()

function takes four arguments:

A list of allocated VMs onto which to deploy.
The River VR module to deploy.
Optionally, which function in the module should start extgmu

Optionally, the arguments toain() or the speci ed start function.

If the start function is not speci ed, execution will begith the main() method of the module,
invoked without arguments. In theory, every deployed VReewtute a different function or even a different
module, however, in practice that rarely makes sense arallysli VRs will execute the same module but
perhaps a different function, depending on the work digtitim paradigm used. Thus, programs using

the manager-workeparadigm may choose to have the worker VMs execute one maitid the initiator

2|n this prototype of River we assume an open network and demptoy strong authentication or provide encryption. Hasvev
River could be deployed on top of a virtual private networlP(N) to achieve stronger security.
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(manager) VM another. On the other hand, programs follovliegSPMD paradigm of all nodes executing
the same code will elect to call the same function acrossaafigipating VRs.

The return value of thdeploy() method is another list of VM descriptors, this time corregpo
ing to the VMs on which the deployment was successful. Howewvenew attributeuuid , is added to
each descriptor, which speci es the UUID of the newly crea¥#R. As such, the list of alluid attributes
from every descriptor in thdeployedlist represents all peers participating in the running iaggbn. A
RiverError  exception is raised if deployment failed on one or more VMs.

The initiating VR thus deploys itself or other VRs onto thenmte VMs. Thisdiscover-allocate-
deployapproach is exible enough to handle a wide range of procesation semantics. Furthermore,
these interfaces can be invoked at any time during prograeougion, thus allowing River programs to
dynamically utilize new machines (VMs) as they become at#&. Note that it is not necessary to have
River application code reside locally on each machine, @adllibe automatically included with thdeploy

request.

3.5 Super Flexible Messaging

In River we introduce a novel message passing mechanisedsalber exible messagin(GFM).
Our mechanism leverages Python's dynamic typing and nanmgadreents for sending structured data as
attribute-value pairs between VRs. SFM allows for an aabjtnumber of attributes and the values can be
any Python data type that can be serialized usingitkée module. Here is the syntax for sending and

receiving:

send(dest=<UUID> [, <attribute>=<value> | ...)
m = recv([<attribute>=<value> [, <attribute>=<value>| .. 1)

Note that the attribute names need only be speci ed at tHesites ofsend() andrecv() . This
mimics normal Python function invocation with named parteree and does not require any additional
speci cation of the message structure elsewhere in the.colis allows developers to send arbitrary data
without declaring the names and types of message elds atitbwuii explicit serialization. Thescv()
mechanism allows for selective message retrieval by sprgiSpeci c required attributes and messages to
received. The elds of a received message are accessed msimdper dot notationm.attribute orviaa
standard dictionary lookupn['attribute’] . The latter construct is useful when dynamically genegatin
attribute names, e.g., in a loop. The list of attribute namey also be obtained by calling thekeys()
method.
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Sent messages are delivered to the message queue of tmati@stVR. Therecv() implemen-
tation uses the speci ed attribute-value pairs to selectsgages from the queue (see Chapter 4 for more
details on the implementation). Thend() function is non-blocking andecv() is blocking®. We also
provide a non-blocking receiveeftv_nb() ) and apeek() predicate for querying the message queue. A
single message queue per virtual resource is used to syntipdifinterface and to more easily support state
management. Higher-level message passing mechanismsasuvnhilboxes can be built using the basic
SFM primitives.

As previously stated, each VR has a receive queue and a UWWB.SFMsend() operation
must explicitly specify a UUID as the destination. On theereig side SFM uses the destination UUID
to associate a message with the destination VR and depasitthie correct receive queue. Theev()
operation retrieves qualifying messages from the recaiezi@

An SFM message is a set of attribute-value pairs. An atiilmaime is always a string, whereas
a value can be of any type, such as integer, string, list,cobgtc. Two special attributes are reserved and
have special meaningrc anddest . Thedest attribute is required when sending and speci es the UUID
of the destination VR. Therc attribute is added automatically by the run-time system @matains the
UUID of the originating VR. If the programmer leaves algst or attempts to providerc in asend()
operation, &RiverError  exception is raised. Thus, sending a message can be as sisp#ssing all the

desired attributes and their values as named parametdrsdent() function. The syntax fosend() is:

send(dest=<VR> [, <attribute>=<value> ] ...)

Typically, at least one attribute-value pair is provide@adldition to thedest=<VR> pair. However,
it is possible to send an empty message for synchronizatimpoges. Consider the following example,
where the destination UUID is stored in a variaBle

send(dest=B, tag='input', data=[1,2,3,4,5)])

Note that the attribute names are completely arbitraryo Adata can come from the surrounding
scope:

rec = { name : 'Dave, id : 24 }
send(dest=newdest, protocol="db’, idrec=rec)

30ur current implementation depends on the sockets lib@ridffering sends.
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As mentioned previously, attribute values can be any Pythipa that can be pickled. This in-
cludes most Python types, e.g., most immutable types, tlgtionaries, and user-de ned objects.

The SFMrecv() function is similar to thesend() function in that it takes a variable number
of attribute-value pairs as arguments. However, the atiivalue pairs constrain which messages should
be received. Each received message is guaranteed to haastthe attribute-value pairs speci ed in the
recv() call. The return value is an SFM message object whose d#slman be accessed using the member
variable dot notation. The defaultcv() function is blocking; thus, if no messages match the speci e

criteria, the caller is blocked until a matching messagwesr The syntax ofecv() is:

message = recv(], <attribute>=<value> ] ...)

In its simplest form, receiving without any arguments waturn the rst message in the queue in

rst-in, rst-out order:

msg = recv()

A more common scenario is to receive a message from a pantisource (note that thec

attribute will appear in all messages, even though it is rpligtly speci ed by the sender):

m = recv(src=A)

Matching can be done on any number of attributes but the/firig conditions have to be satis ed:
all attributes must appear in the message and their valussbawequal to the values speci ed in tieev()
call. Note that this does not mean the message must only hawspéeci ed attributes, just that the speci ed
attributes must be present in the message. Here we ask f@agessthat came from VRand have the
protocol  attribute set to the string valumeput :

m = recv(src=A, protocol="input)

Another possibility is to receive messages from any souscersgy as therotocol  attribute is
equal todb:

m = recv(protocol="db’)
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Since the attribute names are completely arbitrary, magchan be done on any attribute. If a
message does not have one or more attributes speci edvif) , then the message will not be accepted (it
will remain in the queue to be matched later). As shown in FEdtI4, accessing the attribute values of a

message is identical to accessing member variables of Pyihjects.

# VR A
mylist = range(10)
send(dest=B, mytag=42, input=mylist)

# VR B

m = recv(mytag=42)
print m

print m.src

print m.input

print m.mytag

# Output

Message: {dest: 'B', 'src: ‘A", 'mytag: 42, \
input: [0, 1, 2, 3, 4, 5, 6, 7, 8 9]}

A

0,1, 2 3, 4,5, 6,7 8, 9|

42

Figure 3.4: Simple SFM Example

Figure 3.5 shows how different invocationsrefv() can match different messages in the queue,
and how the same message may be matched by specifying diffegeuments teecv() . The rst matching
message will be returned. Note that we just show sample d@iwts and the messages they will match in
the queue, not a sequence of steps.

Additionally, an attribute passed tecv() may be paired with a lambda expression or a named
function rather than a value. This can be done to restricibate values to an arbitrary subset, (e.g.,
id = (lambda x : x > 100) ). In this case, no direct comparison is done but instead fthrattion is
invoked with the attribute value (from the message) as tie amgument if the attribute exists in the mes-
sage. If the function return&rue , the attribute is considered to match. If all other attd@suimatch, the
message is returned. This allows the user to perform morkiga@ted matching such as simulating a
logical OR expression, or arbitrary string matching. Faraple, the following code will match a message

if it contains atag attribute equal to one of the two speci ed values:
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Figure 3.5: SFM Matching

m = recv(tag=lambda x: x == 23 or x == 42)

Finally, to receive a message that contains a certain aiitilregardless of its value, tHéY
constant el ANY within VR code) can be speci ed to achieve a wildcard effecFor instance, the

following code will match any message as long as it htag aattribute, no matter what its value is:

m = recv(tag=self. ANY)

As mentioned above, several variants of tbey() function exist. All of them take a variable
number of attribute-value pairs as arguments but vary iir tlecking effect and return value. Table 3.4
summarizes them.

The difference between the defatdtv() andrecv_nb() functions is thatecv() blocks when

4self ANY is equivalent tdambda x; True
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Name | Description \

recv Blocking receive (most commonly used).
recv.nb | Non-blocking receive. Raises an exception
if no matches are found.

peek Non-blocking peek. Returrigue or False
based on match result.

regcb Registers a callback function to be invoked
when a message matches the speci ed attribytes.
unregcb| Unregisters a callback function.

Table 3.4: Various Receive Functions

no message matching the speci ed attributes has been founereasrecv_nb() raises aQueueError
exception instead of blocking. Tipeek() function works in exactly the same way but retufiige or
False , indicating whether a match has been found without remotiiegmessage from the queue. It is
useful to avoid blocking; for instance, when we expect a nemdb messages from our peers with a given
attribute, but we do not know exactly how many messages thiflrbe. In this case, we can involeek()

in a loop and as long as it returiiaie , there will be a matching message on the queue, so we candlien ¢

recv() without blocking:

while peek(tag="result):
p = recv(tag="result)

Finally, an alternate method of receiving a message istexgig a user-de ned callback function
with the queue. Only one callback function may be registefdsk function will be invoked asynchronously
when a matching message arrives. The syntax is the same #wefother SFM functions except that a
callback  keyword argument must be provided, giving the referencbdatllback function that should be

invoked. The callback function must take a single argumiig:matching message.

def mycbfunc(p):
# process message

regcb(src=A, tag=Tesult', callback=mycbfunc)

The callback function needs to be registered only once butllitcontinue to be called for ev-
ery matching message until unregistered. Thegcb() arguments must match thegeb() arguments

exactly.
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unregcb(src=A, tag="result, callback=mychfunc)

3.6 A Complete River Program

Building on the concepts explained in previous sectiong,ifé 3.6 presents a simple but complete
River example. This program attempts to discover all rugniivis on the network and deploy itself onto
them. All VRs then send a message to the initiator with thesthame, and the initiator prints them out.

1 from socket import gethostname

2 from river.core.vr import VirtualResource

3

4 class Hello (VirtualResource):

5 def vr_init(self):

6 discovered = self.discover()

7 allocated = self.allocate(discovered)

8 deployed = self.deploy(allocated, module=self.__modul e )
9 self.vrlist = [vm['uuid] for vm in deployed]

10 return True

1

12 def main(self):

13 if self.parent is None:

14 for vr in self.vrlist:

15 msg = self.recv(src=vr)

16 print '%s says hello' % msg.myname

17 else:

18 self.send(dest=self.parent, myname=gethostname())

Figure 3.6: First River Program

TheHello class is declared as a subclass/ifualResource on line 4. Note that the same
module is executed on all peers. Recall thatwhenit() function is invoked only on the initiator. Next,
all available VMs running under the same username (the tdfahavior) are discovered on line 6. All the
discovered VMs are allocated on line 7 and the module is tlegogied to each of them on line 8. A list
of all peers is then saved on line 9. Oneeinit() returns, control passes to thmin() function on the
initiator. All the deployed VRs start executimgain() as well, since no other function was speci ed in the
deploy() call.

Recall thatself.parent contains the UUID of the initiator in all the deployed VRs} miequal
to None in the initiator itself. In this way we can distinguish thetiator from the rest of its peers at run
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time. In this example, every child VR sends a message to thatar on line 18, specifying its hostname
as the only message attributeyname The initiator has a list of all its child VRs, and waits to ed® a

message from each on line 15. The hostname of the child VRersphinted on line 16. Note the usage of
the dot notation to access the message attribute and timisttname is identical to what the originating

VR speci es in thesend() call.

3.7 Selective Discovery

So far we have shown only trivial usage of the discover, allecdeploy sequence: all available
VMs are discovered and used to execute the example in Figéréa\hen invoked without any arguments,
discover()  will return a list of available VMs belonging to the user. Hewer, it is possible to further
restrict or expand the list of discovered VMs. This can beedoy passing arguments d@cover()  in the
form of attribute-value pairs, much like in the case of SFMwever, in this case the speci ed arguments
will be matched against the attributes of the remote VMs.

A wildcard self. ANY can be speci ed as the attribute value in thecover()  call to indicate
that any value of that attribute in the remote VM is accetaht long as that value is present. This allows
testing for thepresenceof an attribute, ignoring its value.

For instance, Figure 3.7 shows hall running VMs, regardless of their status, be it available or
busy, can be discovered. Note that although every VM candmodéred, not every VM may be allocated
or used for deployment. The same default rules apply toailoe and deployment as to discovery: a VM

must be available and must belong to the same user as thetermgptig to allocate it for an application.

from river.core.vr import VirtualResource

class Foo(VirtualResource):
def main(self):
discovered = self.discover(status=self. ANY)
print 'Discovered %d VMs:'" % len(discovered)
for vm in discovered:
print '%s %s' % (vm['host], vm['statusT)

Figure 3.7: Broader Discovery

Furthermore, just like with SFM, it is possible to specififambda expression or a named func-
tion as an attribute value. In this case, the function willilneked bydiscover()  during the matching
phase with the actual value as the argument. If the functurmsTrue , the match is successful, and the
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corresponding VM is included in the returned list. Figurg Shows aliscover()  call that looks for VMs
running on Intel architecture. Note that we present onlyréhevant method call, as the rest of the code is

identical to Figure 3.7.

discovered = self.discover(arch = lambda x: x in [i386', 'x 86_641)

Figure 3.8: Selective Discovery with Functions

3.8 Examples

This section presents some sample River prograi@®i, a program that calculates the value of
p using the Monte-Carlo methodlyFreq, a word frequency counter, and parallel dot product andiratr

multiplications functions from a conjugate gradient salve

3.8.1 Monte Carlo Pi

Figure 3.9 shows an implementation for calculating Pi udimg Monte Carlo method and a
manager-worker paradigm. As always,init() method executes rst on the initiator to set up the exe-
cution environment, where available VMs are discovereddaployed on lines 6-7. A list of participating
VMs is gathered on line 8. Next, by default, control passeasaio() on the initiator, and tavorker() , the
function speci ed during deployment, on the worker VMSs.

The remainder of the program is driven by the manager, awedain themain() function. The
number of iterations is passed by the user on the commandrités available aself.args  variable. The
manager then computes and sends out the number of itergi@ongorker on line 17. On lines 20-21 the
manager collects the results from all workers and comphagstal result.

A worker receives the number of iterations on line 29, penfoithe work and sends back the
result on line 38. The UUID of the manager is available to tloeker as theself.parent variable, which
contains the UUID of the initiator.

A more detailed version of this example is presented in AdpeA.1.
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1 import random
2 from river.core.vr import VirtualResource
3

EN

class MCpi (VirtualResource):

5 def vr_init(self):

6 VMs = self.allocate(self.discover())

7 VMs = self.deploy(VMs=VMs, module=self. _module _, fun c='worker’)
8 self.workers = [vm['uuid] for vm in VMs]

9

10 return True

11

12 def main(self):

13 n = int(self.args[1])

14 numworkers = len(self.workers)

15

16 for uuid in self.workers:

17 self.send(dest=uuid, tag="n', n=n/numworkers)
18

19 in_circle = 0

20 while numworkers > 0:

21 p = self.recv(tag="result

22 in_circle += p.result

23 numworkers -= 1

24

25 pi = 4.0 * in_circle / n

26 print 'Our approximation of Pi = %f % pi
27

28 def worker(self):

29 p = self.recv(src=self.parent, tag="n’)

30

31 in_circle = 0

32 for i in range(0, p.n):

33 x = 2.0 * random.random() - 1.0

34 y = 2.0 * random.random() - 1.0

35 length sqr = x * x + y *y

36 if length_sqr <= 1.0: in_circle += 1
37

38 self.send(dest=self.parent, result=in_circle, tag=' result)

Figure 3.9: Monte Carlo Pi
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3.8.2 Distributed Word Frequency Count

Figure 3.10 shows a distributed word count program that ecdegoword frequencies across multi-
ple les. We again use a manager-worker paradigm to disiltlue work, and assume that there are enough
les to create equal-sized chunks of work for each worker \TRe general structure of the program is the
same as the previous example, so we omit most of the skelettalige thevr_init() function. Complete
source code appears in Appendix A.2.

Each worker receives a list of les to process, loops throtlggm, opens each le, tokenizes it,
and counts the number of times each word occurs. The reselsaaed in a dictionary, which is sent back to
the manager. The manager begins by splitting all input [esséed on the command line) into work slices,
one for each worker. The work (a list of le names) is then denthe worker, and the manager then waits
for the results. As the results come in, the manager comitiirgedictionary from each worker into one nal

result.

def manager(self):
for w in self.workers:
self.send(dest=w, tag='files', files=fhames[w])

for w in self.workers:

1

2

3

4

5 m = {
6

7 p = self.recv(tag="result
8

9

rm = p.result
for i in rm:
10 m[i] = m.get(i, 0) + rmli]
11
12 def worker(self):
13 p = self.recv(src=self.parent, tag="files')
14
15 m = {}
16 for f in p.files:
17 wordcount(f, m)
18
19 self.send(dest=self.parent, tag="result’, result=m)

Figure 3.10: Word Count
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3.8.3 Parallel Dot Product and Matrix Multiplication

Figure 3.11 illustrates a simple way of implementing patalbt-product computation and parallel
matrix multiplication. This excerpt is taken from the Riwezrsion of a parallel conjugate gradient (CG)
solver. Due to space considerations, the entire program isagbt shown, but appears in Appendix A.3.

First, thepdot() function is listed, which includes a naive implementatidthe MP1Allreduce()
operation. The local dot product is calculated on line 2ntak worker VRs send their local result to the
parent VR on line 5. The parent collects the local resultsifedl the workers on line 11 and sums them up,
then sends the global sum back to each worker on line 15.|¥iadlthe worker VRs receive and return the
global result on line 6.

Next, in thepmatmul() function we emulate the MPAllgather() operation. All processes
except the parent VR send their local part of vegtto the parent on line 21 and then blockéav() until
the parent sends back the entire glabai line 22. Meanwhile, the parent receives everyone's patine
28 and creates the global version of the vector, which is iepagated to all nodes on line 32. Finally, all
nodes perform the multiplication of the entire vectaand their piece of the matrik and return the result

on line 34.
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4
5
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7
8
9

10
11
12
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15
16
17
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20
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22
23
24
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32
33
34

def pdot(self, x, y):
result = dot(x, y)

if self.uuid = self.parent:
self.send(dest=self.parent, result=result, tag="pdot
m = self.recv(src=self.parent, tag="allreduce’)
return m.result

else:
for w in self.workers:
m = self.recv(tag="pdot’)
result += m.result

for w in self.workers:
self.send(dest=w, result=result, tag='allreduce’)

return result

def pmatmul(self, A, X):
if self.uuid != self.parent:
self.send(dest=self.parent, x=x, tag="pmatmul’)
p = self.recv(src=self.parent, tag="allgather’)
globalx = p.globalx

else:
globalx = X[:]
for w in self.peers:
p = self.recv(src=w, tag="pmatmul’)
globalx += p.x

for w in self.peers:
self.send(dest=w, globalx=globalx, tag="allgather’)

return matmul(A, globalx)

Figure 3.11: Parallel Dot-Product and Matrix Multiplicai
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3.9 Extensions

The River interface combined with Python's syntax and dgbes can also be used to implement
alternate parallel programming models. The bene t of depilg a programming model in River is that
development time is spent on the interesting parts of thamyn run-time support, rather than on mundane
low-level details that would be required in languages swlCaC++, and Java. We also nd Python's
syntax signi cantly rich to explore different parallel csinucts; to demonstrate this we have developed
several alternate programming models. Chapters 5, 6, ardcfile the extensions included with the River
run-time system. This section discusses how a programmetazelop an extension to River and illustrates
this with an example, a remote dictionary extension. Theuwarhof time it took to develop this extension
serves as a testament to productivity afforded by the caoatibim of River and Python — it took less than
two hours to design and implement a working model.

We start by examining a possible sample program built up@netktension. Figure 3.12 presents
a variation of our word frequency counter from Section 3& th based on the remote dictionary extension.
Note that only thevordcount function remains unchanged, but everything else is differdost impor-
tantly, there is no reference to any of the River Core API m@sh or even th¥irtualResource base class.
Instead we derive our class from tRemoteDictionary ~ extension class. The interface provided by this
extension class is the two dictionary methodgyétitem  and__setitem ), which allow usage of the
bracket operators on ttself object. Thus we pas®lf towordcount as the dictionary in which to store

results.

from remdict import RemoteDictionary

class WFreq (RemoteDictionary):
def main(self):
for f in self.args:
self.wordcount(f, self)

def wordcount(self, filename, m):
f = open(filename)
for | in f:
for t in Lsplit():
mt] = mft] + 1
f.close()

Figure 3.12: Word Frequency Example with the Remote DietigrExtension

A partial implementation of th&emoteDictionary extension class is shown in Figure 3.13;
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see Appendix A.4 for the complete source code. The most if@pbmethods here aregetitem and
__setitem__ to get and set items in the dictionary, respectively. On awetsend a request to look up the
speci ed key remotely, wait for a reply, and return the résalthe caller. On a set, we simply send the key
and value pair to the remote machine.

The same class performs the functions of the server hodtimglictionary. In fact, the actual
dictionary will reside on the initiator, which will serviaget and set requests from other machines. After
following the usualliscover-allocate-deploprocedure irvr_init() , the initiator enters a loop, accepting
and servicing dictionary requests. Once all the worker® leited, the nal contents of the dictionary are
printed out.

This is a trivial example that provides an interface in whighltiple clients communicate with a
single server. Access to the global dictionary results imrminication with the initiator, where the actual
dictionary is stored with no redundancy or fault tolerandhe performance is also very poor because
each dictionary access results in network communicatigh mé caching. However, this simple example
illustrates how to build a River extension.

We include more sophisticated examples of River extensiotige following chapters. Chapter 5
presents our Remote Access and Invocation extension. @h@puliscusses Trickle, an explicit but simple

distributed programming model. Chapter 7 presents a Rimeian of the MPI programming library.
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class RemoteDictionary (VirtualResource):
def _ getitem__ (self, key):
self.send(dest=self.parent, action='get’, key=key)
p = self.recv(src=self.parent, key=key)
return p.value

def _ setitem (self, key, value):
self.send(dest=self.parent, action='set', key=key, val

def vr_init(self):
selfm = {} ; deployed = [] ; end = 0

VMs = self.allocate(self.discover())
files = self.args[l]
slice = len(files) / len(VMs) ; extras = len(files) % len(VMs

for worker in VMs:
beg = end ; end = beg+slice
if extras: end += 1 ; extras -= 1

deployed += self.deploy(VMs=[worker], module=self.__mo
func="rdmain', args=files[beg:end)])

self.peers = [vm['uuid] for vm in deployed]
self.startfunc = self.serve

return True

def rdmain(self):
self.main()
self.send(dest=self.parent, action="done")

def serve(self):
done = 0
while done < len(self.peers):
p = self.recv()
if p.action == 'get"
v = self.m.get(p.key, 0)
self.send(dest=p.src, key=p.key, value=v)
elif p.action == 'set"
self.m[p.key] = p.value
elif p.action == 'done"
done +=1

ue=value)

dule_,

Figure 3.13: Remote Dictionary Extension
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Chapter 4

Design and Implementation

The River framework consists of run-time support code witiie River Virtual Machine (VM)
and VirtualResource base class. Internally the River VM is comprised of sevesahponents that work
together to provide the VR execution environment. Theskudecthe uni ed network connection model,
name resolution support, a connection caching mechan@milelvel data transmission routines, and our
communication framework callesuper exible messagin¢SFM). This chapter describes the design and
implementation of the River run-time system. The River Gsmerce code is included in Appendix B.

4.1 Super Flexible Messaging

The SFM implementation consists of two main modules: fheket module (shown in Ap-
pendix B.4), which provides the basic encoding and decoflingtionality, and thejueue module (shown
in Appendix B.5), which provides packet matching at the réng side. We call an SFM messageaper
exible packet(SFP). This section details encoding, decoding, and queuehing.

The SFM implementation does not include any low-level nekwapmmunication routines. In-
stead, such communication is provided by the underlyingrenment, in this case, the River VM, as de-
scribed in Section 4.2. SFM only deals with representingdtita, rather than its transmission. In principle,

SFM could be used on top of any network transport.

4.1.1 Encoding

Encoding consists of serializing the speci ed attributdee pairs and preparing the serialized
packet to be sent over the network (e.g., via a socket comgctAn SFP is created by passing a list of
named parameters to tieecode() function, which rst encodes them into a binary format. Sintamed

parameters in Python appear as a dictionary, we accomplistpy serializing (ompickling, as it is called
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in Python [59]) the dictionary and adding a small header. $R® header consists of two elds: a magic
signature string, used for sanity checking, and the len§itheoserialized payload. As described in Chap-
ter 3, an attribute is a string and its value can be of any lggide type. At least one attribute, the UUID
of the destination VR, is required. Additionally, anothéribute, the UUID of the source VR, is added to
the dictionary automatically. RiverError  exception is raised if no destination is speci ed or if thewus

provides his own source. Figure 4.1 illustrates the engpdaguence.

S ) )
key | value payload SFP
k1 1 I [ A S S 35
k2 v2 01010010 header
01001001
= ot010110 {\;l => payload
otooot1o0t | L
01010010 ( . ) 01010010
........ payloa 01001001
01010010 01000101
01001001 01010010
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Figure 4.1: SFM Encoding Process

Serialization of data exacts a performance penalty bectngselata must be transformed and
copied. Additionally, we incur an extra copy when we comhhmepayload with the SFM header. We show
in Section 4.6.1 that the overall performance of River aggions would greatly bene t from optimizing

the encoding function. Appendix B.4 presents the source tmdur encoding function.

4.1.2 Decoding

Thedecode() function operates as follows. First, the header is decodddarsed to determine
whether a packet has been received in its entirety and toreeribat it is a valid SFP. If the packet is
incomplete, it is not processed until more data is availadleomplete the remaining part. Otherwise, the
payload is deserialized into a Python dictionary and thex tig construct a packet object that represents the
SFP. ThePacket class overrides the internalgetattr () method, allowing users to access the packet's
data by referencing attribute names using member eld d@tian. This lets the user refer to the attributes
contained within the packet using the same names as otigispéci ed by the sender. Furthermore, the
Packet class implements the standard dictionary methods sukéys , values() , anditems()

Two items are returned: an unserialized packet objecN¢oe if there was not enough data to
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complete a packet), and any leftover data, which could bevgtyebuffer, or the entire input buffer. Since
thedecode() function does not preserve any state, the leftover dataldgteusaved by the caller and then
prepended to the next sequence of bytes obtained from tinriebefore the next round of decoding is
attempted. If thelecode() function determines that the input buffer does not contaiali serialized SFP,
an SFMError  exception is raised. This should never be the case whenableliow-level communication

protocol, such as TCP, is employed. Appendix B.4 preseetsdlrce code to our decoding function.

4.1.3 Queue Matching

The message queue consists of an ordered list of receivesl F& rst-in, rst-out order) and
a condition variable, which is used to block a VR when no pacla be returned. In its basic form the
receive function (the queue get method), like the send foimctakes a variable number of attribute-value
pairs (again, as Python named parameters) but uses theiypsa® keatch against packets in the queue. That
is, for a packet to match, all attribute-value pairs pasedthé receive function must appear in the packet
and have the exact same value. To perform matching we linealk the queue of packets and check the
speci ed attributes against every packet. If an attribueswgpeci ed to the receive function but does not
appear in a packet or its value in a packet is different tharotie speci ed, matching fails and we proceed
to the next packet. Only the rst matching packet is returnéthere are several matching packets, multiple
invocations of the receive function are necessary to kedribem.

The basic receive function is blocking and if no packets aesgnt in the queue or none of them
match, the calling process is put to sleep on a conditionalslgi Once a new packet is added to the
queue, the VM will signal on the condition variable, wakingthe sleeping process and allowing it to retry
matching.

If the value of an attribute is a lambda expression or a fonatather than a simple data type, no
direct comparison is done but instead that function is iedowith the attribute value (from the packet) as
the only argument. If the function returiisue , the attribute is considered to match. If all other attrisut
match, the packet is returned. This allows the programmpeitfmrm matching based on a set of values and
simulate other logical constructs.

Additionally, we provide other variants of receive, suchaason-blocking receive that raises a
QueueError exception if no packets were matched angeek() function that returns a boolean value
indicating whether a matching packet can be retrieved frioenqueue (see Section 3.5). The matching
semantics are exactly the same as the basic receive: anyenafdittribute-value pairs used for matching
are passed in as input parameters. The only differenceti$hidd/R is not blocked on a condition variable

if no matching packets are found. The source code for oureueplementation is shown in Appendix B.5.
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4.2 River VM

In the common case, there are three threads of executialeiti® River VM: the network receive
thread, which is responsible for receiving and decodingnmag messages; the Control VR thread, which
responds to discovery and deployment requests; and theapph VR thread, which executes application
code and provides VR support functions. These include ndstho send data, register a VR, set VM
attributes, obtain statistics, and shut down the VM. FiguBeshows a general view of River VMs.
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Figure 4.2: River Virtual Machines

We use a local socket for synchronization between netwarkive thread and application VR
thread. That socket is monitored by #&dect()  system call in the network receive thread and is employed
for two purposes: to signal the network thread to shut dowd,ta indicate to it that a new connection has
been established by the VR thread and the appropriate ssioteld be added to theelect()  read set.

We make the distinction betweeaystemandapplication VRs to differentiate between VRs that
are part of the run-time system and VRs created by the useruemihg a River application, respectively.
Unlike application VRS, there are no restrictions on the bhanof system VRs that can be created in a VM.
The maximum number of application VRs is con gurable, butammon usage the maximum is set to one.

The most important task of the VM is the transmission of mgssdetween VRs: sending on

the source VR and receiving on the destination VM. The imgletation of the River VM appears in Ap-
pendix B.2.
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4.2.1 Sending Data

Thesend() function takes an arbitrary number of attribute-value paomprising a message,
encodes them, and sends the resulting binary data to thimatest VR. It executes in the context of a

running VR and consists of the following steps:

1. Resolve the destination UUID into an (IP, port) tuple.
2. Retrieve a connection to the VM listening on that (IP, ptuple.
3. SFMis used to encode the speci ed attribute-value patsa binary representation.

4. The resulting buffer is transmitted over the network.

Each of these steps is described in detail in the followingiees. Figure 4.3 illustrates what
happens when VR A sends a message to VR B. (1) The VM on which \¥r#nning needs to nd the IP
address and port number of the VM on which VR B is running, $oatdcasts an ARP request. (2) VR B's
VM sends a reply with its information. (3) VR A's VM establist a connection to VR B's VM. (4) This
establishes a communication channel between VRs, andy,rthk message is encoded and sent.

A special case of sending is when a message is transmitteshtioea VR on the same VM. In this
case, a copy of the speci ed attribute-value pairs is maduchvis then used to constructPacket object.
This SFP object is then directly added to the queue of thémdeisin VR.

An mcast() function is provided to multicast a message to all VMs. lmaetics are identical to
thesend() function except that specifying a destination is no longguired and has no effect. Currently,
themcast() function is only used internally for discovery and addressofution and is not exposed to
application VRs. Since there is no destination speci ed muticast message, the message will be placed

in the queue of the Control VR on the receiving side.

4.2.2 Receiving Data
The sequence of receiving data can be broken down into tlwvioly steps:
1. Receive data from the network (e.g., a socket).
2. Decode the data into SFPs.
3. Add SFPs to the queue of the appropriate VR.

4. Perform matching to return an SFP back to the caller.
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Figure 4.3: Sending Data

Unlike sending, there is no explicit low-level receive ftinn available to read data from a socket
and return SFP objects in one fell swoop. Again, this is beeahe SFM model has no provisions for
low-level data transfer details but instead focuses orctirad representation. Since data reception is an
asynchronous event and may happen at any time, we have atgepatwork input thread responsible for
centrally receiving all data from socket connections. Thtads then decoded into SFPs and placed into
the message queue of the appropriate VR, as speci ed bgefte attribute within the packet. Thus, the
recv() function available to application programmers does nabkevany receive-related code within the
VM but operates by retrieving matching packets from the guénithe sequence given above all except the
last steps are performed by the network receive thread.

The network receive thread runs an in nite loop that recei@ad processes network data. We use
theselect)  system call to monitor multiple network connections simn#ously. The network receive
code is tightly integrated with the connection pool (seetiSaat.3) which maintains a set of open connec-
tions. The network thread detects incoming connectionsaaidd them to the pool. Likewise, any dropped
connections are removed from the pool. If there is pending daiting on a connection, it is received and

decoded into one or more SFPs. If an error occurs during degdthat is, if theSFMError exception is
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caught), the data is discarded. It is not possible to recfyeen this condition but we have not seen it in
practice.

Once the network thread has an SFP object from the socketetgentine the destination VR to
which the packet was sent by using the includest attribute. The packet is then added to the message
qgueue of that VR, and the network thread performs a notify coralition variable attached to the message
gqueue being modi ed, in case a VR was blocked oecs() invocation. Figure 4.4 illustrates data reception
in River. The network receive thread also processes thetezgd callback functions, if any. The relevant
source code is presented in Appendix B.2.
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Figure 4.4: Receiving Data

Retrieval of the message by the application VR consists ®3RM queue matching operation
that executes within the VR thread and is described in Sedtib.

4.3 Connection Model and Caching

We have designed a uni ed connection model for low-level ommication between River VMs
(and in turn VRs). Currently we only support sockets but oodei can be extended to support other APIs
and interconnects, such as Ini niband Verbs API [75] and Mgt GM [26]. Our model provides a generic
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net connection object that represents a connection ovetvelsta can be sent and received. This connection
object providesend() andrecv() methods that allow for low-level data transmission andpéoa. In the
case of sockets these directly map to the socketld() andrecv() methods, respectively. The connection
class provides a uniform interface to both TCP and UDP cdiorex; allowing the VM to treat unicast
and multicast connections identically. The source codetorimplementation of this model is shown in
Appendix B.6.

We allow multiple VMs to run on the same host by using a diif@rfECP port number for every
VM. Thus each VM will be associated with a unique tuple caritaj its IP address and port number. Since
all VR communication can be reduced to communication betvkéds, we multiplex several logical con-
nections (between VRs) over a single physical bi-direaideocket) connection between VMs. Thus, two
distinct VRs communicating with another pair of VRs on aaliént VM will be using the same communi-
cation channel, as shown in Figure 4.5. Here VR A and VR B aeewing one application, while VR X

and VR Y are running another.
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Figure 4.5: Multiplexing Connections

When a new connection object is created, thiait_ () method of the connection class per-
forms the low-level socket calls necessary to establismaettion between the two hosts. TCP sockets are
used for low-level unicast communication between VMs (antlin VRs), while UDP multicast sockets
are used for broadcasting messages to all VMs.

A connection object maintains a receive buffer that storgs umprocessed (leftover) data and
automatically prepends it to the new (incoming) data befdtempting to decode the buffer into SFPs.
Decoding is attempted at evergcv()  call after data has been read from the underlying sockeb BIRP
is obtained, an empty list is returned to the caller, or adisine or more valid SFPs upon success.

To support an arbitrarily large numbersimultaneougsonnections we have implemented a caching
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connection pool. The purpose is two-fold: to allow more @wmiions than the underlying OS would nor-
mally support and to avoid setting up a connection betweerygair of VRs participating in a computation.
The connection pool is integrated with the network conmectibject interface in such a way that the VM
never needs to create connections directly but insteadlsimguests the necessary connection from the
pool. If the pool does not currently have such a connectiameva connection object is implicitly created
and returned. The pool object is a dictionary-like datacttme that provides easy access using the standard
Python dictionary lookup syntax with thie (bracket) operator where the speci ed key is a tuple coirtgin
the IP address and port number of the VM to which a connectiarquested. When the pool reaches its
maximum size, connections are expunged on a least recesdty (LRU) basis. If the expunged connection
is later requested again, it will be re-established and a caawmection object for it will be created. By
default the cache holds 1024 connections.

Figure 4.6 shows that although every pair of VRs has a logicahection between them, a phys-
ical connection is only established when there is actua Baing transmitted. The source code for our
implementation of the connection pool concept is preseimtédpendix B.7.

e N\
0$1+2(34 0$1+2(34 0$1+2(34

30(
30(8 )

0$1+2(34 0$1+2(34

30(
6

Figure 4.6: Connection Model
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4.3.1 Name Resolution

From the programmer's perspective River VRs are identi edydoy UUIDs. This is done to
facilitate VR migration by allowing a VR to move between VMg&hout disrupting any inter-VR communi-
cation. Since a VR keeps its UUID when moving to another VMmoaunication carries on unaffected. To
translate a UUID into a VM address (IP address and port numxeuse a mechanism similar to ARP [53]
for name resolution.

The VM maintains a cache that matches UUIDs to an (IP, popletulf no entry is found for
the requested UUID, the VM broadcasts a UUID resolution esgjover UDP multicast, which is a special
system message to locate the VM on which the VR named by thdDWuUrrently executes. When the
target VM receives the request and con rms that it owns thecsed VR, it sends out a broadcast reply
(also over UDP multicast to avoid in nite name resolutionps) that contains its I[P address and port number
tuple. The source VM receives the reply message and adds amgmto the UUID-to-IP cache. When an
existing entry is detected to have expired (after 60 secbyddefault), it is expunged from the cache and
the resolution process is repeated as needed.

Since the request message is sent out within the VR threagteah the reply packet is received
within the network thread, the former blocks for a minimalamt of time to wait for a reply. If no reply
is received, the operation is retried four more times, aftkeich thesend() operation is aborted and a

RiverError  exception is raised if a UUID does not resolve. See Append2d@ the relevant source code.

4.4 Discovery, Allocation, and Deployment

A special system VR, called the Control VR, is created on\ye¥é¥ during initialization and
exists until the VM terminates. Its purpose is to receive ggpond to system requests, such as those for
discovery, allocation, and deployment. What differemtiathe Control VR from other VRs is that the River
VM is made aware of it as the VR to whose queue the system messaly be delivered (see Figure 4.7).
Our implementation of Control VR is shown in Appendix B.3.

However, other than this special property, in its strucamd behavior the Control VR is identical
to any other VR. Itis responsible for responding to discgvaitocation, and deployment requests as well as
creation of new VRs and cleanup of terminated ones. Additlgnthe Control VR maintains a map of VM
attributes, such as River version, Python version, CPUds@eaount of memory, and others. (See Table 3.3
for a complete list.) Recall from Chapter 3 that before dsted execution can begin, the initiator needs to
follow the discover, allocate, deploy procedure. See AdpeB.1 for the source code of our implementation
of this procedure.

Discovery is a procedure by which an initiator locates otHdis on the network that are available
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Figure 4.7: Control VR

for execution of River applications. Discovery is typigatlone at application startup, but it can also be used
at any point during application execution to dynamicallyadiver additional VMs. We elected to implement
discovery using UDP multicast, rather than relying on arediged registry, to keep River usage as simple
as possible. We also did not want to introduce the added buvdethe user to run another daemon that
maintains the centralized registry.

To discover available VMs on the network, the initiating V@hds out aliscoverrequest, which is
an SFP that is multicast to all running VMs. Since it is a sysiressage and does not contain a destination
UUID, this SFP is added to the message queue of the Control’W/Rereceiving side. The Control VR
will retrieve and process it.

The initiator can choose to discover all VMs or further coaist discovery based on attribute
matching. For instance, the default behavior is to disctis whose status attribute indicates that the VM
is available for use. Alternatively, one may want to onlycdiger VMs with more than, say, one gigabyte
of RAM. Discovery attribute matching adheres to the SFM eorivns described in Chapter 3, so multiple
attributes may be speci ed. The Control VR on the target VM@ens matching and, if successful, replies
to the initiator indicating that it is available. If matclgims unsuccessful, the discover request is ignored.

Once the initiator obtains a list of VMs matching its seardkeda, it needs to allocate them for
execution. This is done by issuing altocate request to the discovered VMs. Again, this is received by the

Control VR on the target VM. By default the allocation requesist come from the same user as the one
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who owns the target River VM, otherwise the request is igthofEhe Control VR generates a new UUID
for the VR about to be instantiated and replies to the imtiaidicating a success.

Finally, after the initiator receives all the allocatiorplies, it issues aeploy request which con-
tains the module source code, name of the module, functiarhich to begin execution, and any arguments
that are passed to the designated function. The target@&fRrveri es the allocation, imports the module,
and instantiates a new VR. Since the VR runs in its own thri¢gdibgins execution as soon as the Control
VR calls itsstart() ~ method.

The VR module can be imported in several ways. If the modulecgocode was supplied with the
deploy request, which is the default behavior, a moduleaated dynamically. Otherwise, if the initiator
exported a local directory (see Section 5.2), the ControlatBmpts to retrieve the source code by reading
the speci ed le from the exported directory. Finally, iflatlse fails, the module is imported from the local

le system. If no import is successful, deployment failsdaam error is propagated back to the initiator.

>>> class A: pass

>>> class B(A): pass

>>> class C(B): pass

>>> jmport inspect

>>> inspect.getmro(A)
(<class ' _main__.A>)

>>> inspect.getmro(B)
(<class ' __main__.B™>, <class
>>> inspect.getmro(C)

_main__.A>)

(<class ' _main__.C'>, <class ' _main__.B">, <class ' _m ain__.A>)
>>> v = [A, B, C]

>>> v

[<class ' _main__.A>, <class '__main__.B>, <class '_m ain__.C>]
>>> rv.sort(key=lambda x: len(inspect.getmro(x)), rever se=True)
>>> 1y

[<class '__main__.C>, <class '__main__.B™>, <class '_m ain__A>]

Figure 4.8: Obtaining Base Class List

It is possible that a module contains more than one subcla¥stmlResource , and one of
them may be a derivation of another. Thus, we need to seleatdirect class for instantiation, which will
be the most specialized one. To properly make this detetromave use the Pythoinspect module [57]
to obtain the base classes of each candidategtihod resolution ordel-or example, consider three classes:
A, B, and C, where B is derived from A, and C is derived from Byufe 4.8 shows usage of thetmro()

function from theinspect module to obtain the list of base classes of each A, B, and Bemtder of the
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depth of their class hierarchy. We also show how to sort &fist, B, and C appropriately so that the most
specialized class is the rst element.

To determine the correct VR class to instantiate from a Rmedule, we iterate through the
speci ed module's dictionary and check each attribute .h# attribute is a subclass @irtualResource
it is added to a list of potential candidates for instantiati We then sort this list by the depth of each
candidate's class hierarchy, given by the length ofgétenro() function's return value. The list is then
returned to the Control VR, which instantiates the most isfieed class, given by the rst element of the
list. Note that if two classes have equal depth of the clammldhy, thesort()  function will place only one
of them at the head of the list, and that class will be inséaedi. In case of multiple inheritance, we rely
on thegetmro()  function to provide the correct class hierarchy. In practitis ambiguity should not arise

because each VR class is contained in its own le. Figure Advs the relevant source code.

def getVRclasses(module):
v =
for name in dir(module):
ref = getattr(module, name)
try:
if ref 1= VirtualResource and issubclass(ref, VirtualReso urce):
rv.append(ref)
except TypeEtrror:
pass

rv.sort(key=lambda x: len(inspect.getmro(x)), reverse= True)
return rv

Figure 4.9: Determining the Class to Instantiate

45 Fault Tolerance

River was originally conceived with fault tolerance in minthe Core API and underlying pro-
gramming model supports execution transparency throufimames via UUIDs and decoupled message
queues. This allows VRs to seamlessly migrate between VNts avily a brief pause in execution. The
version of the River run-time system described in this thesies not support checkpointing or migration,
however, there exists a branch of the code where this workéas implemented. It utilizes a special ver-
sion of Python, called Stackless Python [73, 69], to captiueearbitrary run-time state of VRs. Stackless
Python removes the use of the C run-time stack from prograesugion in the Python interpreter. This
feature combined with the notion tdsklets allows dynamic program state to be pickled just as any other
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Python object instance. This version of River is descrilmeié].

4.6 Experimental Results

We wrote several micro-benchmarks and applications to umedbe performance of River. Our
experimental platform consisted of a varying number of isb@hnodes of a cluster. Each node was equipped
with dual Opteron 270 dual-core processors, 4 gigabytes®dfl Rand Gigabit NIC, and all were connected
to an isolated Gigabit network. For all the experiments warllRython 2.4.3 and executed tests with the -O

option (optimization turned on). All the results shown eg@nt an average over three runs.

46.1 SKFM

To determine the cost of the SFM mechanism we constructethplesiping-pong benchmark.
Using this benchmark we compare performance of differguedyof mechanisms that could be used to send
data between two Python processes running on two differestsh Note that only the last version of this
particular benchmark is a River application; all othersstemdalone Python programs.

\ | 128 bytes| 16kb | 64kb |
mechanism| lat | bw lat | bw lat | bw
sockets 48 | 20| 220 | 568 || 642 | 778
pickle 73| 16| 275 | 453 | 964 | 518
SFM 84| 14| 285 | 439 | 1005 | 497
SFM w/Q 97| 13| 305 | 410 1031 | 485
River 222 9 455|276 || 1080 | 463

Table 4.1: Ping-Pong Latency (lats) and Bandwidth (bw, Mbps)

Table 4.1 shows the latency and bandwiddi ve different implementations of a ping-pong
benchmark that transmits a character array of a given sizde drxad forth between two processes. The rst
version,sockets , simply sends the array from sender to receiver and back tisePython interface to the
socket library; no encoding of the data is done. Plikle version is an example of how a programmer
could use thepickle module in Python to transfer structured data to a remote meacht demonstrates
the cost of pickling a Python object and sending it over thisvaek. Because we do not know the size
of pickled data a priori, we prepend a small header that austhis information to the data. This incurs
a performance penalty due to an additional copy before sgndirhe SFMversion useencode() and

decode() functions with the named argument notation provided by thl $rodel to serialize the data. The

1We de ne latency as the total time elapsed for the messagelMips as 29 bits per second.
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SFM w/Qimplementation adds trivial use of the queue mechanismigedvby the SFM model by putting
the received packet on the queue and then retrieving it. Becthis involves operations on a condition
variable within the queue, it results in an additional perfance cost. Finally, thBiver version is a full
River application that transmits data back and forth betwe® VRs. Figures 4.10 and 4.11 show graphical
representations of our bandwidth and latency resultsertisely.
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Figure 4.10: Ping-Pong Latency

Both SFMversions introduce overhead that results in lower bandwaatd higher latencies but
signi cantly simplify the code that a programmer would naiy have to write to send structured data
across the network. As discussed in Chapter 3, the SFM mtmtehlows powerful packet matching based
on attributes and their values. These results representdihgt-case scenario since a typical distributed
program would consist of both communication and computatiddditionally, our queue implementation
has not been optimized yet. Finally, tR&ver version adds yet more overhead in the form of additional
threads. Recall from Section 4.2 that a typical River apilin involves three threads: the VR thread,
the network receive thread, and the Control VR thread. Batadeived by the network receive thread but
processed by the VR thread. Synchronization between tiesads in the form of a condition variable
(see Section 4.2) results in additional performance pgregiproximately 30%, compared $Mversions.
Using 128 bytes and 16 kb for the buffer size is not suf ciemaithieve optimal performance; we get better
results with a 64 kb buffer. These ndings indicate that aiytext switches due to a separate network
thread and additional Python processing in the criticah panetwork communication results in signi cant

overhead. For instance, both encoding and decoding fursciiwur overhead due to copying of buffer data.
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Figure 4.11: Ping-Pong Bandwidth

Also, Python libraries do not provide any scatter/gath@r dperations, which would be bene cial in this

case.

4.6.2 River Core

To measure network performance of the River Core, we wrotéver Rersion of thetcp [74]
benchmark and compared its results against the standardsforveAdditionally, we used an implementa-
tion of the Conjugate Gradient (CG) solver to obtain appiicaperformance measurements. This section
presents our experimental results of these two application

46.21 TTCP

We tested River network performance using the standegd [74] benchmark. The C version
comes with most Linux distributions and is freely availabtethe Internet. Additionally, we wrote a River
version of the benchmark and a straight Python version. eTéldl presents our bandwidth measurements
obtained by running each version with various buffer sized Rigure 4.12 graphs the results. Note that
unlike the ping-pong benchmark, which measures the roupdine of a messagsdicp only measures
how fast data can be sent out — there is no acknowledgementtfre receiver.

It is worthwhile to note that if we use a buffer size of 64 kby&tiis able to achieve the same
bandwidth as straight Python and even C versions. With smhbliffer size, River performance suffers,
again, due to synchronization between multiple threadseatrd processing overhead in the critical path of
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| version | 128 bytes| 16 kb | 64 kb |
C (original) 643 | 896 | 896
Python 394 | 89| 896
River 21 654 | 896

Table 4.2: TTCP Bandwidth (Mbps)
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Figure 4.12: TTCP Bandwidth
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network communication. With smaller buffer sizes, the aigprocessing and synchronization dominates

the cost of data transmission.

4.6.2.2 Conjugate Gradient Solver

We also used the conjugate gradient (CG) solver, shown ireAgp A.3, to benchmark River
application performance. The CG solver is a ne-grain datgdrogram and involves substantial communi-
cation between consecutive computation steps. We haveau2ed8 2048 matrix of oats for input. Our
experimental platform was a small cluster of 8 nodes, eath dvial Opteron 270 processors and 4 GB of
RAM. To obtain the results for 32 VMs we ran four River VMs orckaf the eight nodes, and for 16 VMs,
two on each of the eight nodes.

The results, given in Table 4.3, show that River can be usgxtallelize and speed up straight
Python code. Obtaining the best possible performance faapgtication is not one of our goals, and,
needless to say, one would not normally use Python for thisqee. However, we demonstrate that existing
Python code can take advantage of River and obtain signi speedup.

Additionally, we wrote a version of the CG solver that usestumeric Python library to calcu-
late the most computation-intensive steps: matrix mudigtion and dot product. While this dramatically
speeds up the overall computation, the communicationligistie in Python and thus does not scale well.
Performance quickly deteriorates as more VMs are addedubec@dmmunication, done in Python, begins
to dominate computation, done in C. Also, this version of @vexr uses our own inef cient collective
operations which further inhibit performance. The C MPIsien, included for comparison, was compiled
with -O2 (optimizations turned on), and used the LAM MPI immplentation. All the results are shown in
Table 4.3 and graphed in Figure 4.13.

\VMs H 1\ 2\ 4\ 8\ 16\ 32\
River time 6375| 3389| 1704| 917 | 505 443
River speedup 1.00| 1.88| 3.74| 6.95| 12.62| 14.39
Numeric time 99.60| 61.10| 53.60| 48.19| 67.75| 120.80
Numeric speedupy 1.00| 1.63| 1.85| 2.07| 1.47 0.68
C/MPI time 81.95| 42.04| 24.63| 25.32| 16.22| 11.41
C/MPI speedup 1.00| 1.95| 3.32| 3.23| 5.05 7.18

Table 4.3: Conjugate Gradients Solver Results (seconds)
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Chapter 5

Remote Access and Invocation

The River Core interface described in Chapter 3 can be usedttonly develop parallel and dis-
tributed Python programs but also to implement alternatalieh programming models. We nd Python's
syntax rich enough so that we can explore different paraleistructs; to demonstrate this we have de-
veloped several extensions to River. In this chapter weeptethe Remote Access and Invocation (RAI)
extension to the River Core, which is a generalized RPC/REimnism. In addition to supporting remote
procedure call and remote objects, the RAI mechanism algpasts remote access to global data. The
RAI mechanism is built using the River Core APIl. We have u$edRAI mechanism to support local di-
rectory export, a simple form of network le sharing desetbin Section 5.2, as well as the Trickle task
farming extension, described in detail in Chapter 6. Tadklbuilt directly on top of the RAI mechanism,

demonstrating that extensions are stackable and supps#.re

5.1 Programming Model

RAl is a uni ed interface to establish remote interfaceshe functions and classes from a des-
ignated Python module. RAI provides remote data accessyteeprocedure call, remote object creation,
and remote method invocation. The implementation contawscomponents: a server and a client. The
RAI server takes a Python module and serves its content®tolignts. The module can contain arbitrary
Python code (classes, functions, data, etc.), rather tisee ¢ River application. The classes and func-
tions provided inside the module will be available for remotstantiation and invocation by the clients.
Furthermore, functions and classes may be injected frorolitets into the server where they can execute.
Figure 5.1 illustrates the RAI concept and capabilities: éx@mple, RAI allows us to (1) invoke a method
de ned in a remote object, (2) inject locally-de ned codearithe remote Python interpreter, and (3) use the

injected code.
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Figure 5.1: Remote Access and Invocation

To execute an RAIl server on a machine, it is simply starteth #ie standard River launcher,
giving the name of the modulei.py , on the command line as the River program to run. The RAI tdien
are written as standard River applications and are laungteesdame way.

Figure 5.2 gives an example of a complete RAI module that easdoved. It consists of two
functions that we want to make available for remote invacati When the RAI server starts up, it will
automatically set two custom VM attributeBAI _module , the value of which will be the le name of the
Python module being served, aRdl _server , the value of which is the UUID of the VR running the RAI

server.

def add(*args):
return reduce(lambda a,b: atb, args)

def mult(*args):
return reduce(lambda a,b: a*h, args)

Figure 5.2: Sample RAI Server Module

To access an RAI server's data and methods remotely it isssapgto obtain a handle to the RAI
server, represented by tRemoteVR object (a special proxy object for remote access). To itistEnsuch
an object, the client rst needs to obtain the server's UUWhich appears as a value of tRal_server
attribute and thus can be obtained using the standard Ra@nery mechanism. OncdramoteVR object is
instantiated, the data and methods exported by the refenldRAl server can be accessed using the member

dot notation.
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Figure 5.3 presents the client-side code and shows how td&eéna remote procedure. Note that
we only need to perform discovery to nd an RAI server; alltiea or deployment steps are not needed in
this case. Also, we do not use thie_init()  method here, but instead perform discovery wittmain() .
We discover our speci ¢ RAI server by matching on the modwdene being served (line 7). We then obtain
that RAI server's UUID from the VM descriptor on line 12 andeate aRemoteVR object to represent it
on line 13. When creating RemoteVR instance, it is necessary to pass it a referencselfo, that is, a
VirtualResource object, to allow remote objects access to the V&Bsd() andrecv() methods for

communication. Finally, we invoke methods through this eeobject on lines 16 and 17.

1 from river.core.vr import VirtualResource

2 from river.extensions.remote import RemoteVR
3

4 class RAlTester (VirtualResource):

5 def main(self):

6 try:

7 vm = self.discover(RAI_module="samplerai")[0]
8 except IndexError:

9 print 'RAl server not found'

10 return -1

1

12 server = vm['RAI_server]

13 r = RemoteVR(server, self)

14

15 args = range(1,10)

16 print ' remote call add', args, r.add(*args)
17 print ' remote call mult', args, r.mult(*args)

Figure 5.3: Sample RAI Client

By default the RAI server executesrigstrictedmode, which allows the clients to execute the code
and access the data that were speci cally provided in theesanodule, but not anything else. However,
it is also possible to execute the RAI serverimrestrictedmode, which gives clients access to the entire
remote Python interpreter and all of its contents. As suoh,clients can remotely direct the server-side
interpreter to import any standard library module or call bailt-in function, which would not be allowed
in the default restricted mode.

Unrestricted mode can be invoked by passingiaestricted command-line argument to the
RAI server. Note that no server code is necessary in this easal we need on the remote side is a Python
interpreter and standard library modules.

Another feature of unrestricted mode is the abilityriect code and data into the remote Python
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interpreter. The injected function can then be invoked itaadard way. Figure 5.4 shows an example of
how to access a remote RAI server running in unrestrictedenand how remote and local invocations and

arguments to these invocations can be mixed seamlessly.

1 from river.core.vr import VirtualResource
2 from river.extensions.remote import RemoteVR
3 import operator

4
6 def factorial(x):

7 if x == 1: return 1

8 return x * factorial(x-1)
9

10 class RPCTester (VirtualResource):
11 def main(self):

12 try:
13 vm = self.discover(RAl_module='<unrestricted>")[0]
14 except IndexError;
15 print 'RAI server not found'
16 return -1
17
18 server = vm['RAI_server]
19 r = RemoteVR(server, self)
20
21 r.inject(factorial)
22 print ' remote sum of local range', r.sum(range(10))
23 print ' local sum of remote range’, sum(r.range(5))
24 print ' remote factorial, r.factorial(r.sum(r.range( 5)))
Figure 5.4: RAI Client for an Unrestricted Server
In unrestricted mode the module name in B VM attribute is set tocunrestricted> . We

match on this attribute when performing discovery on line &% before, we obtain a reference to the
remote VR on line 19. At this point we can access any builtyithBn methods and variables by using the
dot notation on this remote VR object. On line 21 we injectltual factorial() function into the remote
interpreter.

Beginning on line 22 we show two examples of mixing remote lmodl invocations. First, we
invoke the built-insum() method remotely and pass itaal argument: a list locally generated by the built-
in range() function. Next, on line 23 we invoke tream() function locally, passing a return value from a

remote invocation ofange() as an argument.

1in this prototype of RAI we assume an open network and do npl@nstrong authentication or provide encryption. However
River and RAI could be deployed on top of a virtual privatewak (VPN) to achieve stronger security.

60



Finally, on line 24 we perform several nested remote metladid.cFirst, we remotely call the
range() function, which returns a list. We then pass this list to #motesum() function, which calculates

and returns the sum of all elements. Finally, this valuevsigias an argument to the injectiadtorial()

function that is also invoked remotely.

5.1.1 Passing Remote Object References

With RALl it is possible to pass a reference t®emoteObject to the RAI server or even another

VR. For instance, consider the following code that openseaoh the remote side:

_‘
1

RemoteVR(server, self)
r.open('/etc/fstab")

—
1

print f.read()

In this case a remote reference to a le object is returnedhigopen() function and thus the

invocation ofread() is also remote.

However, if an injected function needs to make use of rembjects, it has no way of accessing
them directly, as they do not share the same namespace. €l abjects on the remote side are kept
in the RAI server's namespace to which injected code doeshaet access.) The solution is to pass a

RemoteObject reference from the initiator:

RemoteVR(server, self)
r.open('/etc/fstab")

—_ =
o

def myread(f):
return f.read()

r.inject(myread)
print r.myread(f)

Note the distinction: in the previous exampdad() is invokedremotelyby the local code, while
in this case it is invoketbcally by the injected function. The reference to a remote le obggts translated

into a local reference on the server.
Additionally, we can send RemoteObject reference to another client VR:

self.send(dest=self.peer, file=f)
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The destination VR can access the receRenhoteObject in the standard RAI way:

p = self.recv(src=self.parent)
f = pfile
print f.read()

5.2 Local Directory Export

Local Directory Export (LDE) is a simple RAI module that pides an export of a local directory,
allowing remote VRs to access its les. It is very useful irsea where all machines running a River
application do not share the same network lesystem but neestcess common data. In such cases, the
data may be placed on the initiator machine, which expossdtita directory using LDE by specifying
--export-dir option to the River launcher. The River launcher autombyictarts the RAI server running
the LDE module before starting the main program.

The LDE module provides two functiongistdir() , Which is a wrapper for the function of
the same name in thes module, andpen() , which is a wrapper for the Python built-in function. This
enables LDE clients to list the contents of the directorynbeaixported and access remote les for reading
and writing.

As before, the VR on the client side needs only to gBemoteVR reference using the standard
discover calls, as shown in Figure 5.3, and then proceedsdmsa the les it needs through that refer-
ence. Figure 5.5 demonstrates access to remote les thakpmeted with LDE. Thaliscover()  calls are

omitted.

r = RemoteVR(server, self)

files = r.listdir()
f = r.open(files[0])
data = f.read()

Figure 5.5: Using Local Directory Export

5.3 Design and Implementation

The server in execution simply waits for incoming requesisfthe client, which could be any of
the following:
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inject Inject the speci ed source into the server.
call Invoke the speci ed function with given arguments on theveer
getattr Access a remote object attribute using dot notation.

deleteDecrement reference count to a remote object.

A call request invokes the speci ed function or method. If an objgcreated by the invocation,
it will be returned by reference. This allows for remote @bjereation. Agetattr request looks in the
VM namespace for an attribute reference. It allows for remgidates and access to global variables and
objects. If an exception is raised, it will be propagatedkbiacthe sender. Thdeleterequest is used to
indicate that a remote proxy object is no longer accessiblese are usually generated implicitly by the
Python interpreter when a local reference is deleted onlitiet side and allows for objects to be reclaimed
by the remote server's garbage collector. The source cotfetBRAI server is presented in Appendix C.2.

On the client end a special object of tyRemoteObject is used as a proxy for both the remote
VM handles and remote objects. The proxy object overridesynud the default object access methods,
including__ getattr () , __setitem_ () , getitem () , and others. If an attribute does not exist in
the local proxy object, it is assumed to be an attribute onéh®ote object and a request to access it is sent
to the server. In this way, RAI can transparently propagadallattribute access and invocations to remote
VRSs.

All replies to attribute lookups are processed accordirnipew type: scalars are returned directly,
objects are saved in a lookup table on the server side andject @i is returned, and any exceptions are
propagated back and raised on the client side. We save thetabferences in a dedicated environment to
protect them from the garbage collector, as no other reteremthe object will exist on the server otherwise.
Functions are treated in the same manner as objects, ekegpheéy are not stored in a lookup table on the
server.

The RAI client support code creates an instance oRmeoteObject class when a reference to
an object is returned. The instance contains the object nigsrid on the server, and UUID of the remote
VR. Functions are returned as callable remote object insnWhen invoked as a function, the remote
object sends a message to the server, specifying the fanadime to call, its arguments, and awaits a reply
with the return value. Return values from functions are pssed in exactly the same way as replies to
attribute lookups. Section 5.4 discusses in depth our waiiimplementation attempts of remote functions.
See Appendix C.1 for the RAI client source code.

Recall that to send a message from one VR to another, abhais of the message need to be

serialized. To allow for serialization, and thus for tramssion, RemoteObject proxy implements special
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Python methods getstate () and__setstate_ () . The former method is invoked at serialization and
is responsible for removing any references traualResource object that encapsulates it. Normally, a
RemoteObject has a reference to its parent VR and the V&sd() andrecv() methods, which it uses
for communication. Before serialization, all these refess are removed from the object and it is marked
asorphan In fact, the only data kept are the object name, object id,the server UUID, on which the
object resides.

After a remote object is transferred and the rst time tbrphanobject is used for an attribute
lookup?, RAI code will detect that it is not attached to a parent VR wiiltllocate the parent automatically.
This is done with Python introspection using thgpect [57] module. First, we obtain the current stack
frame withinspect . Then, we check the module name of the code in the currerit Btme, which is given
in the frame's global variable space. As long as the stackdreefers to the code from the RAI module, we
travel back up the call stack and obtain the previous staukdr Finally, the rst stack frame outside the
RAI code will belong to &/irtualResource object, and a locadelf reference will point to the VR itself.
We then create RemoteVR instance with this reference abihd it to the orphanobject, which associates

the VR's communication methods with the remote object. Fedu6 gives the relevant implementation.

def _ getattr _ (self, name):
if self.orphan:
frame = inspect.currentframe()
while frame.f_globals| _name__"] == 'river.extensions remote”;
frame = frame.f _back

parent = frame.f_locals['self]

r = RemoteVR(self.server, parent)
self.bind(r)

Figure 5.6: Locating a Parent for Orphan Remote Objects

Since the actual objects exist on the RAI server, it does aetlrio follow the same procedure,
but instead walks the speci ed argument list and converjsRemoteObject references to its local object
references, looked up by object id.

Code injection from the initiator to remote VMs is also ackig with Python introspection. Itis
possible to obtain the source code for any function or clasnga reference using thespect module.
Theinject() function uses the speci ed reference to nd the source cdde source is packaged up and

sent to the remote VM. The RAI server accepts itiject request and uses the Pythexec statement to

2In Python every invocation and variable access is preceyle attribute lookup.
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introduce the source into the running VM.

The RAI request invocation handler on the client side disidach request into two parts: sending
and receiving. By default the two halves are invoked in sageeHowever, such division makes it possible
to support asynchronous invocation with the() method. Figure 5.7 illustrates this idea.
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Figure 5.7: Asynchronous Invocation in RAI

Whenfork() is invoked to indicate an asynchronous method invocatiom RAI client sends a
remote request to the server and then retummediatelywithout waiting for a reply. A special kind of
a remote object is returned:FarkHandle instance. This proxy object keeps track of outstanding temo
invocations, and later, theorkHandle instance can be used to join with an outstanding requese that
the RAI server invokes the method synchronously as sooreagtluest is received, and sends a reply when
the method completes. Since each VR has its own receive gtleieeply from the server can arrive at
any time and it will be queued on the requesting VR. The cleamt then invoke th@in method of the
ForkHandle instance, which will wait for a reply and return the resulgdking if necessary. Our Trickle
programming model, described in Chapter 6, makes extensiwef this feature. However, all invocations
in the base RAI API are synchronous. That is, at every invogad send is immediately followed by a

blocking receive.

5.4 Discussion

Our implementation of remote function calls merits furtbecussion. In Python a function invo-
cation is preceded by an attribute lookup with the functiame as a key. This is translated into a remote
request, and the server sends a reply indicating that tlem gittribute is a function. However, our represen-
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tation of that function reference on the client side wenbtigh several iterations.

Our rstinitial implementation simply saved the last awie name looked up. If the result of the
lookup was a function, we returned a reference to a spstotd@) method that handled all remote function
invocations. Our assumption was that if an attribute looksujpllowed by a function call, it is the function
just looked up being invoked.

However, this assumption proved awed in the case of nestedtion invocations (line 22 of
Figure 5.4). In such cases the Python interpreter perfainibokups rst, and only then invokes the
functions. Thus, in our scheme thamge() function is looked up last, and so all three invocations &l
treated as invocations adnge()

Our next approach was to still keep ab() method but employ a partial function application

using a closure to keep track of function names. Figure So#/slour implementation of this technique.

def curry(func, fname, *args0, **kwargs0):
def callit(*args, **kwargs):
kwargs.update(kwargsQ)
return func(fname, *(argsO+args), **kwargs)
return callit

Figure 5.8: Partial Function Application in RAI

When a remote attribute lookup results in a reference to ateefanction, we return a reference

to thestub() function, embedding the method name as the rst argument.

return curry(self.stub, fname, *args, **kwargs)

This approach solves our nested invocation problem. While an acceptable solution, it is
needlessly complicated, and requires special treatmeneinodte function references when they are passed
as arguments to other remote methods, for instance, ogeatapecial wrapper object to represent remote
references.

Our nal solution came from a realization that remote funos are very similar to remote objects:
both have a name, an id of the object they belong to, and thedDlifiithe server on which they reside.
Therefore, in the nal version of the implementation we retaRemoteObject instance both as references
to objectsandfunctions. A ag, indicating that an object is callable, @ded to theRemoteObject instance
if it represents a function or a method. Thiab() method within theRemoteObject class has been

renamed to_call_()  to allow client code to invoke the object like a regular fuoet. Like the currying

3python uses the existence of such a method within a classiadiaation that instances of the class are callable.
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solution, this approach complies with Python's nesteddation resolution semantics, but does so in a more
Pythonic way.

5.5 Comparison with PYRO

PYRO [20], short for Python Remote Obijects, is an advancedpamverful Distributed Object
system that provides an object-oriented form of RPC, soraewsimilar to Java RMI [34]. PYRO claims
to be very easy to use but we feel that River's RAI syntax isamtural and superior in its exibility and
simplicity. To compare the two, we took a simple example fritwd PYRO documentation and wrote an
RAI version of it.

First we de ne a module to be served to remote clients and niartestmod.py . This le is

identical, regardless of whether it is served by PYRO or Rijrovides a class de nition with four simple
arithmetic methods.

class testclass:
def mul(s, argl, arg2): return argl*arg2
def add(s, argl, arg2): return argl+arg2
def sub(s, argl, arg2): return argl-arg2
def div(s, argl, arg2): return argl/arg2

PYRO requires a server that will provide access to the modiite thattestclass  is rede ned
here to inherit from PYRO's base object. The server registeelf with PYRO's name server that must be

running on the network and then enters an in nite loop waitiar client requests.
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import Pyro.naming
import Pyro.core
from Pyro.errors import PyroError, NamingError

import testmod

class testclass(Pyro.core.ObjBase, testmod.testclass)
pass

def main():
Pyro.core.initServer()
daemon = Pyro.core.Daemon()
locator = Pyro.naming.NameServerLocator()
print 'searching for Name Server...'
ns = locator.getNS()
daemon.useNameServer(ns)

try:
ns.unregister(‘test)
except NamingError:
pass

daemon.connect(testclass(), 'test)

print 'Server object "test” ready.'
daemon.requestLoop()

if __name_==" main_ "
main()

Finally, we need a PYRO client that can make use of the remigjecowe serve. To nd our
object we contact the PYRO name server that must be runniriigeonetwork and obtain the object's URI.

Then we get a proxy reference to the remote object and can hsijig it.
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import Pyro.naming, Pyro.core
from Pyro.errors import NamingError

locator = Pyro.naming.NameServerLocator()
print 'Searching Name Server...",
ns = locator.getNS()

print finding object’
try:
URI=ns.resolve('test)
print 'URL',URI
except NamingError,x:
print "Couldn't find object, nameserver says:"x
raise SystemExit

test = Pyro.core.getProxyForURI(URI)

print test.mul(111,9)

print test.add(100,222)

print test.sub(222,100)

print test.div(2.0,9.0)

print test.mul(*",10)

print test.add('Stringl','String2")

RAI does not require a separate server module; all the n@gessde is built into the River frame-

work. A client needs only to locate the necessary servegusia standard River discovery mechanism; to

do so, we can simply look for the matching name of the moduiegoserved. Once we get a handle to the

remote VR, we instantiate otestclass  object as we would in any Python program. Note that this step

is somewhat obscure in PYRO: a proxy handle is obtainedadstafter that, we call the object's methods

just like in PYRO.
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from river.core.vr import VirtualResource
from river.extensions.remote import RemoteVR

class RAlTester (VirtualResource):
def main(self):
try:
vm = self.discover(RAI_module="testmod’)[0]
except IndexError;
print 'RAI server not found'
return -1

server = vm['RAI_server]
print 'Found RAI server', server

vr = RemoteVR(server, self)
test = vr.testclass()

print test.mul(111,9)

print test.add(100,222)

print test.sub(222,100)

print test.div(2.0,9.0)

print test.mul(**,10)

print test.add('Stringl','String2")

In total PYRO requires 3 source les (module, server, cliemd 3 processes (name server, server,
client). RAI, on the other hand, requires only 2 les (modaled client) and runs 2 processes (server and
client). No name server is required is used for RAI. We alsb fieat the RAI syntax is much simpler and
natural, providing more exibility of use.
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PYRO | 213
RAI 941

Table 5.1: Remote Invocation Cosis|

Finally, we measured remote function invocation cost wibthbPYRO and RAI, shown in Ta-
ble 5.1. Here PYRO outperforms RAI because it is a singledtied library, whereas RAI is part of a
multi-threaded framework. RAI performance is low due to@dyonization between multiple threads (e.g.,
the network receive thread) and extra processing overhlretitkicritical path of network communication.
Also, recall that at any given time, a River process involbese separate threads: network thread, Control
VR thread, and application VR (in this case, RAI server)dlteThese results are in line with the ping-pong
benchmark results, described in Section 4.6, when run Wétstnallest buffer size of 128 bytes. The size
of data transmitted by RAI in this case is minimal and thusynechronization overhead dominates. The
percent difference between RAl and PYRO performance isejipiately equal to the percent difference be-
tween the performance &ver andsockets versions of the ping-pong benchmark, as shown in Table 4.1.

In a production River system the performance of small messaguld need to be addressed.
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Chapter 6

The Trickle Programming Model

Trickle is an extension to River that provides a simple paogming model to write distributed
scripts and programs and brings heterogeneous distrifprtgtamming to the Python programming lan-
guage. The Trickle interface is explicit, but simple; a pesgmer can easily express parallel execution of
coarse-grained work. Following the Python philosophycHig provides a few simple mechanisms that can
be learned quickly. At its core, Trickle is a task farmingemgion to Python, built on top of the RAI mech-
anism described in Chapter 5, but it also provides a richildiged object system. Unlike other distributed
object systems for Python, such as PYRO [20], Trickle presid simple namespace that does not require a
dedicated name server or an object broker. Trickle can e tosdistribute work statically or dynamically.
As such, itis ideal for extending an existing Python progtartake advantage of unused cycles in a network

of machines.

6.1 Programming Model

The Trickle programming model provides a MPMD (multiple gram, multiple data) model. It
incorporates three basic concepts: injection, remotesac@nd asynchronous invocation. An initiating
Trickle program can inject local functions and classes ietoote Trickle VMSs, as illustrated in Figure 6.1.
Once injected, remote objects can be instantiated, aatessd invoked transparently with local VM han-
dles. Using fork/join parallelism, remote code can be imglasynchronously on remote VMs for true
parallel execution. Finally, Trickle provides a simple rmagism for dynamically scheduling work to re-
mote VMs. This mechanism simpli es the use of networked niraeth of varying performance.

The programming model extends the standard Python exeanidronment by allowing multiple
Python interpreters running River VMSs to interact in a caoated manner. A Tricklénitiator takes care

of deploying appropriate code to all the workers. Note thatworker VMs run no speci ¢ code; they only
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run the standardver executable. Just like with the River Core, a user will stdahk River VMs on
each machine that can be involved in a distributed commutattach Trickle worker VM has access to all
resources available to the owner of the River VM processs eans that a Trickle worker can access the
local le system or any network-mounted le systems avaléato the user of the remote VM.
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Figure 6.1: Trickle Model

The Trickle initiator, invoked by théickle executable, discovers available VMs and executes
the Trickle program passed to it as a command-line argunidmtinitiator can issue a commanddonnect
to remote River VMs. Once connected, the initiator ggact data, functions, or classes into remote VMSs.
Access to remote data or code is achieved through the rernoes@mechanism, described in Chapter 5.
Remote access is seamless, so a remote request appearscakradoest. Consider the simple Trickle
program presented in Figure 6.2.

This code connects to the available River VMs using ¢binect()  function. A list of VM
handles is returned fromonnect() ; in this case 4 handles are returned. The handles are usindéing
remote operations. Initially, each connected VM is idle aadtains a default Python run-time environment.
In order to use a VM, the initiator must use thiect()  function on a VM handle or a list of VM handles to
transfer local Python objects from the initiator's envinoent to the remote VM environments. In addition to
VM handles, a Python object must be passed as a parameat@ct) . Possible Python objects include
data objects, functions, and classes. Usimggt() , the initiator can Il each VM with any data and

code necessary to carry out a remote computation. In thimebea we inject the functiofoo() into each
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1 def foo(x):

2 return x + 10

3

4 vmlist = connect()

5 inject(vmlist, foo)

6 results = [vm.foo(10) for vm in vmlist]
7 print results

$ trickle exsimple.py
[trickle: discovered 4 VMs]
[20, 20, 20, 20]

Figure 6.2: A Simple Trickle Program

discovered VM.

Once objects have been injected into remote VMs, they carct®saed using the VM handles.
We can invoke remote operations synchronously or asynolsiyn In this examplefoo() is invoked
synchronously on each remote VM using RAI (line 6). Note tieatote access looks similar to local access
except for the VM handle pre x. Also, this example uses adsinprehension to collect the results of each
remote invocation. Since we are using synchronous invatagach remote call too() must complete
before the next call is issued.

Notice that this simple program is completely self-corgdinit is not necessary to have any code
on the remote VMs prior to execution. Thrgect() method takes care of transferring objects and code
from the initiator to the VMs. This approach makes it is easprganize small parallel Trickle programs.
Also, compared to an SPMD programming model, the Trickle eh@glvery explicit: a programmer only
injects necessary code into remote VMs. While subtle, wiebeimany programmers will nd this model
more natural than a model like MPI [45, 48], in which disttibdi processes differentiate themselves via a

rank value. Also, unlike distributed object systems, Tieaoes not require separate client and server code.

6.1.1 Connecting and Injecting

As described previously, a Trickle initiator usgminect() to discover remote worker VMs. The
return value ofconnect() is a list of VM handles \{mlist ). Therefore, the number of available remote
servers is computed dgn(vmlist) . Itis possible to specify a maximum number of VMs needed for a
particular computation by passingmax argument toconnect() . For examplegonnect(4) requests a
maximum of 4 VMs. If 4 VMs are not located, an exception isedisRestricting the number of required

VMs also allows a user to run multiple Trickle programs sitanéously as a single initiator may not need
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all available VMs.
The valid forms of Trickleanject() are:

inject(vm, obj0 [, obj1] ..)
inject(vmlist, objo [, objl] ...

Trickle injection explicitly places Python objects intawete VMs. It is possible to inject data,
functions, and classes. Thgect() function can take a single VM handle or a VM handle list as thst
argument. The remaining arguments are objects to be idjedtea VM handle list is provided, then the
object arguments are injected into each VM in the VM handie [The injected objects are copies of the
original initiator objects and they can be accessed trapsfig using a VM handle. The access is similar to
a local access. When an initiator completes executiongtiefeobjects are removed from the remote Trickle

VMs. See Figure 6.3 for different forms of injection.

1table = {1:%, 2: D}
2
3 def find(name, namelist):

4 for i, n in enumerate(namelist):
5 if n == name:

6 return i

7

8 class foo(object):

9 def update(x, y):

10 selfx = x

11 selfy =y

12

13 vmlist = connect()
14 inject(vmlist, table, find, foo)

Figure 6.3: Trickle Injection

6.1.2 Synchronous Remote Access

Once code and data have been injected into remote VMs, thgset® can be accessed trans-
parently using synchronous remote access via VM handlesh Esnote access invocation is blocking; an
invocation must complete before the program can contineewdion. In addition to injected objects, all
Python built-in functions are available for remote invooat

Figure 6.4 shows how to access remotely injected data. $nctse, we have injected a list into
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1 vmlist = connect(4)

2 names = [Alex', 'Sami', 'Greg', 'Peter]
3 inject(vmlist, names)

4 for i, vm in enumerate(vmlist):

5 vm.names[i] = *NONE*

6 print vm.names

$ trickle exsynchdata.py

[trickle: discovered 4 VMs]
[*NONE*, 'Sami', 'Greg', 'Peter]
[Alex', *NONE*, 'Greg', 'Peter]]
[Alex, 'Sami’, *NONE*, 'Peter’
[Alex', 'Sami', 'Greg’, *NONE*]

Figure 6.4: Synchronous Data Access

four remote VMs; each VM gets its own copy of the list. We can$iparently perform updates on the
remote lists (line 5). This also works on remote dictiormidmd any remote object that supports the item
assignment interface [56].

Both injected functions and Python built-in functions canifvoked remotely using VM handles.
Possible parameter values for remote invocation are omiigdd to Python data types that can be pickled
(serialized). Figure 6.5 shows how to call an injecfedorial() function and theange() built-in
function.

Remote object creation and invocation is demonstrateddnrEi6.6. In this case, we are only
creating a remote object on a single Trickle VM in line 13. \Weoke the remote object just as we would a
local object on lines 14-16. A remote object will exist on emme VM as long as there is a local reference

to the proxy object.
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def factorial(x):
if x == 0: return 1
else: return x * factorial(x-1)

1
2
3
4
5 vmlist = connect()

6 inject(vmlist, factorial)

7 for i, vm in enumerate(vmlist):

8 print vm.range(i+1), vm.factorial(j)
$ trickle exsyncfunc.py

[trickle: discovered 4 VMs]

0 1
0, 1 1
0, 1,2 2
0,12 3 6
Figure 6.5: Synchronous Function Invocation
1 class Stack(object):
2 def __init_ (self):
3 self.stack = ]
4 def push(self, x):
5 self.stack.append(x)
6 def pop(self):
7 return self.stack.pop()
8 def _ str_ (self):
9 return self.stack. _str ()

11 vmlist = connect()

12 inject(vmlist, Stack)

13 s = vmlist[0].Stack()

14 s.push('A") ; s.push('B"); s.push('C")
15 s.pop()

16 print s

$ trickle exsynchclass.py
[trickle: discovered 4 VMs]
[IAI’ IBI]

Figure 6.6: Synchronous Object Invocation
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6.1.3 Asynchronous Remote Invocation

Parallel execution is achieved in Trickle with asynchranheamote invocation. Trickle uses a
fork/join paradigm to invoke remote functions or methodgnatironously. The Trickldork()  function
begins the execution of a remote function and returns imatelgi with a handle. The handle is later used
by ajoin()  call to synchronize with the remote invocation. The bamik{) andjoin() functions have

the following forms:

h = fork(vm, func, arg0 [, argl ] ...])
hlist = fork(vmlist, func, arg0 [, argl ] ..])
hlist = fork(vmlist, funclist, arg0 [, argl ] ...])
hlist = fork(vmlist, funclist, arglist)

r = join(h)
tlist = join(hlist)
h, r = joinany(hlist)

These functions are quite exible; they can be used to forkngls function on a single VM or
invoke a function on multiple VMs. In addition, it is possbio map a list of functions to a list of VMs.
In this case, each VM is invoked with a different function lire tfunction list. The same arguments can be
passed to the function(s) or an argument list can be usedgalifierent arguments to different functions in a
function list. As with remote invocation, any Python datpeyhat can be pickled is a valid argument. When
lists are used, thiainclist  andarglist  must be of equal length; otherwise an exception is generated

Thejoin()  function waits for all handles provided. Howevpipany()  waits for the comple-
tion of a single invocation from list of two or more handlesraturns a value and the associated handle.
Figure 6.7 presents different usedak() andjoin()

Basic usage ofork() andjoin() is shown on lines 10 and 11. A single function is forked on
a single VM with a single argument. The returned handles segl Wyjoin()  on line 11 to wait for the
invocation to nish execution. Lines 14 and 15 show how to madfst of functions and a list of arguments
to a list of VMs to fork multiple computations in a single caflinally, lines 18 and 19 show how to map a
single function to multiple VMs and an argument list so ttmat function is invoked with different parameter
values on different VMs.

Thefork()  function does not use local threads to achieve asynchraneosation, rather, a non-
blocking send issues the remote invocation request, aaiagplin Chapter 5. Thus, each Trickle VM needs

only one computation thread.
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def foo(x):
return x + 10

def bar(x):
return x + 20

vmlist = connect()
inject(vmlist, foo, bar)

O© 00O NO Ol wWwN -

RN
o

hO = fork(vmlist[0], foo, 1); hl = fork(vmlist[1], bar, 2)
r0 = join(h0); rl = join(hl)
print r0, rl

e e
B WM

hlist = fork(vmlist[0:2], [foo, bar], [1, 2])
flist = join(hlist)
print rlist

el e
© N o o

hlist = fork(vmlist, foo, range(len(vmlist)))
print join(hlist)

RN
O

$ trickle exasynch.py
[trickle: discovered 4 VMs]
11 22

[11, 22]

[10, 11, 12, 13]

Figure 6.7: Asynchronous Invocation

6.1.4 Dynamic Scheduling

The Trickle fork() andjoin()  functions are general enough to implement a variety of ap-
proaches for scheduling work on remote VMs. However, a comidimm is to construct a list of work
and repeatedly assign portions of work to be consumed by oademote VMs. Trickle provides the

forkgen()  andforkwork()  functions to accomplish this task:

rlist
rlist

forkgen(vmlist, func, worklist [, chunksize=n])
forkwork(vmlist, func, worklist [, chunksize=n])

The programmer provides a list of VMs, a worker function, ardt of work. Each work element
can be any Python object. The worker function must be impideteto correctly process the work element
object type or a list of such objects. Therklist  parameter may also be a work generator function,
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provided by the user. Thierkgen() andforkwork()  functions will issue work to remote VMs in a
dynamic fashion until all the work is completed. This idioamdoe used to take advantage of remote VMs
running on machines of different speeds. The optichahksize parameter is used to send work elements
in chunks to remote VMs to reduce network overhead. fotkgen()  function is a Python generator and
should be invoked in éor loop to allow work to be scheduled dynamically. It will retupartial results
from remote function invocations as they become availaflbe forkwork() ~ function will wait for all
invocations to complete and then return a list of results.

Figure 6.8 shows an example of usifogkgen()  to calculate a running sum of an integer array.
The array is broken into multiple chunks of work that will lsumed by participating VMs; it is calculated
on line 8. Note that the chunk size is independent of the nurab®¥Ms. Any remaining work will be
assigned to one of the VMs. We invokekgen() inafor loop on line 11, and add up return values as

they become available. Two VRs were used in this exampletauslttvo partial sums were returned.

1 def rsum(nums):

2 return sum(nums)
3

4 vmlist = connect()
5 inject(vmlist, rsum)

6

7 a = range(0,1000)

8 ¢ = len(a) / len(vmlist)

9

10 total = 0

11 for rv in forkgen(vmlist, rsum, a, c):
12 print 'partial sum =, rv

13 total += rv

14

15 print final sum = total

$ trickle exforkgen.py
partial sum = 124750
partial sum = 374750
final sum = 499500

Figure 6.8: Dynamic Work Scheduling
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6.2 Word Frequency Example

In this section we present a complete Trickle program. Edu® is a distributed word frequency
counter calledVFregt. Given a list of le namesWFreq computes the total count of each unique word
found in all the given les. This is a common operation usediatument indexing and document analysis.
If the data les exist on all the remote machines, then thentiog phase runs in parallel. Only the work

distribution and merging phases are sequential.

import sys, glob

def wordcount(files):
m = {}
for filename in files:
f = open(filename)
for I'in f.
for t in Lsplit():
m[t] = m.get(t,0) + 1
f.close()
return m

def mergecounts(dlist):
m = {}
for d in dlist:
for w in d:
mw] = m.get(w,0) + d[w]
return m

if len(sys.argv) != 4.
print 'usage: %s <vmcount> <chunksize> <pattern>' % sys.ar gv[0]
sys.exit(1)

n = int(sys.argv[1])
cs = int(sys.argv[2])
fles = glob.glob(sys.argv[3] + ")

vmlist = connect(n)

inject(vmlist, wordcount)

rlist = forkwork(vmlist, wordcount, files, chunksize=cs)
final = mergecounts(rlist)

Figure 6.9: Document Word Frequency Counter

1Refer to Figure 3.10 for this same example written using RG@re API.
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The WFreq program consists of three parts: a worker function, a margetion, and the Trickle
code to distribute the work. The worker functiaordcount()  accepts a list of le names and computes
a single dictionary that maps words to their correspondiegjiencies in all the les provided as input.
Themergecounts()  function simply combines all of the remotely computed warfjiency dictionaries.
Finally, the main Trickle code connects to the availablecHlE VMSs, injects thewordcount()  function,

then issueforkwork()  to dynamically schedule provided le names to the workerchion.

6.3 Implementation

Trickle is implemented on top of the River Core and uses thé Réchanism. Remote object
access, code injection and asynchronous invocation suggmovided by RAI (see Chapter 5). Thus, most
Trickle methods are simply wrappers of their respective Rélinterparts. The only component imple-
mented speci cally within Trickle is support for dynamiclemduling. The complete source code to Trickle
is shown in Appendix C.3.
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Figure 6.10: Trickle Deployment

6.3.1 Deployment

All Trickle servers start out as blank River VMs, availabte @ise. The Trickle initiator discovers
available VMs and deploys the RAI server VR onto them, as shiowFigure 6.10. Trickle con gures the
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RAI server to expose the standard Python environment, ghed run inunrestrictedmode. In this way, once
Trickle client code connects to the remote VM, it can accegthing in the exported Python environment.
To protect the River run-time data, the RAI server createspamateglobals andlocals dictionary for
use by injected code. At startup all Python built-in funoare copied to thglobals  dictionary to allow
remote access to them.

The Trickle initiator class is a subclass ViftualResource . After deploying the RAI server
to available VMs, it saves a list of them internally. Thid is used by theonnect() function to create
RemoteVR objects corresponding to all participating RAI serversisTist of RemoveVRobjects is returned
by theconnect() function to the user. The Trickle user code is not importéagesit is not part of any
object. Instead we use the Pythexecfile() function to execute it within the context of the Trickle
initiator VR.

As described in Section 5.RemoteVR and its parent clasflemoteObject , are special proxy
objects used for both the remote VM handles and remote abjdntthis way, Trickle can transparently
propagate local invocations to remote VMs. The Tricklerdlieode acquires VM proxy handles with the
connect()  function, and then injects or remotely invokes code on them.

Aside fromforkgen()  andforkwork() , all other Trickle functions are simply wrappers for their
RAI counterparts with special argument handling to allostsliof VM handles and functions to be passed
in.

6.3.2 Dynamic Scheduling

The Trickle dynamic scheduling mechanistorkwork()  is built using basic asynchronous in-
vocation and Python generators. Internaltykwork()  calls a generator callefdrkgen() , as shown in
Figure 6.11.

def forkwork(self, vmlist, fname, work, chunksize=chunks ize):
results = []
for rv in forkgen(vmlist, fname, work, chunksize=cs):
results.append(rv)
return results

Figure 6.11: Implementation ddrkwork()

The internalforkgen()  routine dispatches work to available remote VMs and waitsrfeoca-
tions to nish. Each time a remote invocation completes, & peece of work, if available, is dispatched to
an available VM. An abbreviated version, without the suppmrchunksize , is given in Figure 6.12.
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def forkgen(self, vmlist, fname, work):
hlist = ]
while True:
while len(work) > 0 and len(vmlist) > O:
w = work.pop()
vm = vmlist.pop()
hlist.append(fork(vm, fname, w))

if len(hlist) > 0:
h, rv = joinany(hlist)
vmlist.append(h.vm)
yield(rv)

else:
break

Figure 6.12: Implementation ddrkgen()

By implementingforkgen()  with a Python generator (indicated by using tled statement)
we simplify the implementation dbrkwork()  and also provide the programmer with a mechanism to
process partial results while work is executing on remotesVMhis shows how Python generators can be

used to extend the semantics of both fdre statement and list comprehensions in a novel way.

6.4 Discussion

Trickle requires injection to be performed explicitly byethiser. For instance, a function cannot
be passed tfork() and invoked remotely unless it is explicitly injected rsthere are advantages and
disadvantages to this approach. On one hand, a programmsd Wave to write less code and not worry
about injecting if it was done implicitly by Trickle. On théh®r hand, our programming model is very
explicit, and we require the programmer to perform that &begonsistency.

The RAI implementation currently does not support propagatemote object references. For
example, the Trickle initiator code may pass a remote olbgetence from one server to a function invoked
on another server. While we allow remote objects to be paaseatguments to functions invoked on the
sameserver, there is no code to handle external remote objedtseoserver side.

Likewise, we do not allow callbacks to the initiator — in caseemotely invoked function needs
to make use of objects located on the initiator. The reastimtehis is that we maintain a strict client-
server separation: the Trickle initiator (RAI client) exées client code only, and the Trickle VMs (RAI

servers) execute server code only. To support such a meohawie would need to allow the Trickle VMs
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to function as RAI clients, and the Trickle initiator, as afdlRerver. This would introduce a synchronization

requirement to limit concurrent access to shared data argddbmplicate the programming model.

6.5 Comparison with IPython

IPython [50] attempts to create a comprehensive envirohfoemteractive and exploratory com-
puting. It also provides a sophisticated and powerful aeciire for distributed computing that abstracts
out parallelism in a very general way enabling many paradiguch as SPMD, MPMD, or task farming.
As such, we think it worthwhile to compare IPython with its/&i counterpart, Trickle.

To compare Trickle with IPython we have written an IPythomsi@n of the Word Frequency
benchmark, described in Section 6.2. The Trickle versishdsvn in Appendix A.6 and the IPython version,

in Appendix A.7.
The IPython interface works through an object of tyhgtiEngineClient . First, we need to
import the IPython module and instantiateMaltiEngineClient object. This takes care of discovering

and allocating the available hosts, in River terminologyeil we use thget ids()  function, which serves
as an equivalent of Trickle'sonnect() method: it returns a list of IDs of machines that can be used fo

parallel computation.

from 1Python.kernel import client
mec = client.MultiEngineClient()

ids = mec.get_ids()

With Trickle we can obtain the same list by calling ttmnect() function. No import is nec-
essary because the Trickle initiator already populategtbieal namespace with the appropriate method

references.

vrlist = connect()

IPython uses the "push” functions to put data on the remate. dUnlike Trickle, different func-
tions are used depending on the type of data. For instandagad function to the remote side requires the
invocation of thepush_function() method. In this case, we are pushing a function calledcount()

to the remote clients. Note that the syntax is reminisceth®SFM syntax: a dictionary of key-value pairs.
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mec.push_function(dict(wordcount=wordcount))

This concept is called injection in Trickle. However, Tiielkloes not require a special method for
function injection; any type of data can be passeidjéot()

[vr.inject(wordcount) for vr in vrlist]

To put data on the remote hosts with IPython we useptisk() function.

[mec.push(dict(files=slices]i]), targets=i) for i in ids ]

With Trickle we do not need to explicitly inject data if it wihe passed in as a function argument;
we simply use it, as we would in a normal Python program.

Finally, to execute the function with the correct argument$ython, we need to pass the appro-
priate Python statememts a stringto theexecute()  function. All variables and methods referenced by
the statement need to exist on the remote side. In this cas@awe previously pushed th@rdcount()
function and thdiles list.

mec.execute(freqs = wordfreq(files))

With Trickle, we invoke remote functions in a standard Pytheay and pass in local arguments;
they will be automatically transmitted to the remote sidentd\that we use asynchronous execution with
fork()  here.

handles = [vr.fork(wordcount, slices[vr]) for vr in wvrlist ]

Finally, we collect the results in the form of partial digteries from each node. With IPython, we

need to pull the data from the remote side, again, by supplyia variable name as a string.

rvlist = mec.pull('freqgs’)

With Trickle, we just use the return value as returned by thection. Note that since we use
asynchronous execution here, we collect the return valutbstejoin()  function.
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rvlist = [h.join() for h in handles]

6.6 Experimental Results

We used a version of the word frequency program, present&kdtion 6.2 as a benchmark to
evaluate Trickle performance with a partial Enron Emaild3at [22] given as input. The dataset consisted
of 55,366 les for a total of 277 MB in size. Three versions beétbenchmark were used: a River Core
version, listed in Appendix A.2, a Trickle version, listedAppendix A.6, and an IPython version, listed in
Appendix A.7.

We ran all versions of thefreq program on a small cluster to see what kind of speedup islgessi
Our experimental platform consisted of a varying numberdehtical nodes of a cluster. Each node was
equipped with dual Opteron 270 dual-core processors, dygiga of RAM, and Gigabit NIC, and all were
connected to an isolated Gigabit network. For all the expenits we used Python 2.4.3 and executed tests
with the -O option (optimization turned on). To obtain resdbr 32 VMs we ran four River VMs on each
of the eight nodes. Each node was given a complete copy offaeset.

We have compared the performance of the IPython versionfan®iver/Trickle versions using
the same dataset. The River/Trickle versions performeui santly faster, regardless of the number of
VMs participating. Table 6.1 shows the results of runninglor2, 4, 8, 16, and 32 VMs. Figures 6.13
and 6.14 show the graphs representing both absolute penfmenand speedup of thdreq benchmark.
The results shown are an average over three runs. As can hénsi® results, the serial portions of the
code limit the speedup in the case of River and Trickle. Faurttore, the Trickle version is slightly slower
compared to River, as it incurs additional overhead fromRA¢ layer. However, these results show that it
is relatively easy to leverage multiple machines with TieckAdditionally, both River and Trickle versions

signi cantly outperform IPython.

\VMS H 1\ 2\ 4\ 8\ 16\ 32\
River Core time 33.88| 18.82| 11.83| 9.12| 8.38| 8.84
River Core speedupp 1.00| 1.80| 2.86| 3.71| 4.04| 3.83

Trickle time 33.61| 19.54| 12.54| 9.52| 9.35| 10.67
Trickle speedup 1.00| 1.72| 2.68| 353| 3.59| 3.15
IPython time 46.70| 36.51| 37.14| 42.13| 57.83| 83.60

IPython speedup 1.00| 1.28| 1.25| 1.11| 0.80| 0.56

Table 6.1: Word Frequency Results (seconds)
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6.7 Trickle Quick Reference

Trickle extends River with a small number of global builtfimctions. A new VM object is used

as a proxy to access remote elements. A quick referenceddrribkle interface is given in Figure 6.15.

# Starting a Trickle program
$ trickle foo.py

# Connecting to Trickle VMs
vmlist = connect([n])

# Injecting objects into a vm or vmlist
# obj can be any type: immutable, mutable, function, class

inject(<vm>|<vmlist>, <obj0> [, <objl>] ...])

# Synchronous remote access

y = vm.X # get remote value of x
vm.dx] =y # update a remote list/dict
y = vm.foo(*args) # invoke remote function
f = vm.FooClass(*args) # instantiate a remote object
y = f.bar(x) # invoke remote method

# Asynchronous remote access (parallel invocation)
<h>|<hlist> = fork(<vm>|<vmlist>, <func|funclist>,
(<arg0> [, <argl> ] ..]) | <arglist>)
<r>|<rlist> = join(<h>|<hlist>)
<> = joinany(<h>|<hlist>)
<r>|<rlist> = forkjoin(<vm>|<vmlist>, <funcl|funclist>,
(<arg0> [, <argl>)] ..]) | <arglist>)

<rlist> = forkwork(<vm>|<vmlist>, <func>, <worklist>
[, chunksize=<n> ])
<r> = forkgen(<vmlist>, <func>, <worklist>

[, chunksize=<n> )

Figure 6.15: Trickle Quick Reference
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Chapter 7

River MPI Implementation

We have developed a River-based MPI [45, 48] implementatialhed rMPI, for the rapid proto-
typing and analysis of MPI functionality. Our base implenagion of the MPI 1.2 standard is an extension
to the River Core and lends itself to quick understandingrandi cation of point-to-point communication,
collective communication, and derived data types. The rMirface conforms closely to the C MPI in-
terface and can be used to learn about MPI implementatiorgpldre techniques that would otherwise be
too cumbersome in existing production systems. The rMRdreston is a good example of using River for

understanding the design details of an existing interfackta explore alternative implementations.

7.1 Design

To further demonstrate the capabilities of the River framwand to support rapid prototyping
and easier understanding of MPI implementations we haveloleed a River extension called rMPI. Unlike
previous approaches to provide a Python interface to MRdries [36, 42, 46], rMPI is an implementation
of MPI written entirelyin Python; it does not depend on an underlying C MPI implezi@.

We have focused on making rMPI as useful as possible by follpiwo important guidelines: (1)
provide a Python MPI interface that strictly conforms to @BIPI interface; and (2) create a small, modular
implementation that supports selective inclusion of MRidtibnality as needed (e.g., a derived data type
engine or non-blocking communication). These guidelireagelseveral desirable consequences.

Close conformance to the C MPI interface enables programinegasily get started with rMPI
by following documentation for the C bindings. Thus, tratisig MP| programs from C to Python and vice
versa is easy and straightforward. This uidity makes itgibke to leverage Python for rapid application
development and debugging, then migrate to C for perforeamaterestingly, our Python MPI interface
conforms more strictly to the MPI standard than popular Bytlwrappers for the C MPI implementa-
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tions [36, 42, 46]. Unlike existing Python wrappers for MRE do not try to make MPI more Python-like.
Instead, we make Python more C-like.

The modularity found in rMPI facilitates rapid developmemtd comparison of multiple algo-
rithms for the same functionality. Therefore, rMPI can beduto quantitatively and qualitatively evaluate
implementation techniques. Such evaluation can ultimatel used to guide the evolution of C MPI im-
plementations or aid the development of application-spddPI libraries. Because our implementation
is quite small (the base implementation is 810 lines of Ryttade), it does not take much effort to begin
making changes and experimenting with new ideas. We allalitiadal functionality, such as derived data
types and optimized collective communication, to be addeckeded.

Our experience with using Python and rMPI for systems dg@mént has been quite refreshing
when compared to the conventional approach using C andasthii@i tools. In contrast to a C MPI 1.2
implementation, such as USFMPI [12], the developer doe®beocdme tied to the design decisions — in the
case of C, making core changes would often require a signi enount of software engineering. With
rMPI, it is relatively easy to go from an idea to a working irplentation. Furthermore, the simplicity of

the rMPI framework allows one to try several different impkntation strategies.

7.2 Programming Model

The rMPI interface requires that all names from th@.py are imported into the target applica-
tion. Also, each rMPI program must de ne a new class that EgsesMPI. By convention, execution of
each rMPI process beginsmain() . This mimics C convention, including command-line arguigassing.
Figure 7.1 shows code for a simple rMPI program.

In C MPI many arguments are supplied as pointers so thatblasiacan be updated within the
MPI calls (e.g.,MPI_Comm_rank(MPI_COMM_WORLD, &rank)). Python does not have an "address &} (
operator. Therefore, in rMPI we introduce a wrapper typedalPl_Int . New variables can be instantiated
asx = MPLInt() . Such references can be used to allow MPI functions to makéobject value. Access
to the object value is achieved via tha@ue member:x.value . This simple Python class allows us to
simulate pass by pointer semantics, which allows us to badlieere to the C MPI interface.

An important design decision in the rMPI interface is howrtat send and receive buffers. InC, a
pointer to a region of memory is passed to the MPI commuminatutines. To retain the order and type of
parameters from the C MPI interface, we decided to requaiegbnd and receive buffers be simple Python
lists. We chose to use lists, rather than arrays [55], becatisheir simpler and more natural syntax. In
Python, lists are passed by reference, so a list referemcgecee as a "pointer” to a buffer. One consequence

of this scheme is that receive buffers must be preallocakéd.rMP1I routines do not dynamically allocate
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from mpi import *

class Hello(MPI):

def main(self, args):
MPI_Init(args)
rank = MPL_Int()
np = MPL_Int()
MPI_Comm_rank(MPI_COMM_WORLD, rank)
MPI_Comm_size(MPI_COMM_WORLD, np)
status = MPI_Status()

recvouf = [ 0.0 ] * 4
sendbuf = [ rank.value * 100.0 ] * 4

if rank.value ==
for i in xrange(l, np.value):
MPI_Recv(recvbuf, 4, MPI_FLOAT, i, 0, MPI_ COMM_WORLD, sta tus)
print 'From rank %d:" % (i), recvbuf
else:
MPI_Send(sendbuf, 4, MPI_FLOAT, 0, 0, MPI_COMM_WORLD)
MPI_Finalize()

Figure 7.1: A Simple rMPI Program

space for incoming data. Again, this mimics the C MPI integfand also helps avoid excess copying. The
Hello example in Figure 7.1 sends a list of 4 elements from eachraiokiO process to rank 0. The receive
buffer in rank O is reused for each message.

Using a simple Python list reference works in many situaiadowever, a common idiom in C
MPI is to pass a pointer that addresses a location within lacaied memory region. This is especially
useful in conjunction with derived data types in order toceke data, e.g., transposing a row to a column in
a matrix. To support this idiom in Python, we allow bufferaafnces to be tuples of a list reference and an
offset into the list:(buf, offset) . This notation, while not strictly C MPI notation, allows tasretain the
number and type of the parameters to the MPI functions wihipgparting C-like semantics. For example,

say you have a list with 100 doubles. You can receive 10 dewdibating at offset 50 like this:

recvbuf = [ 0.0 ] * 100
MPI_Recv((recvbuf, 50), 10, MPI_DOUBLE, src, tag, comm, st atus)

The base rMPI implementation supports blocking setel (Send() ) and receiveNIPl_Recv() ).
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The base can be extended to include non-blocking commigricand corresponding support functions
(e.g.,MPI _Isend() , MPI_Irecv() , MPI_Wait() , etc.). In addition, the base implementation includeseaiv
implementations of all the major collective communicatfonctions. Most of the implementations have
linear time complexity in the number of processes. Suchemgntations keep the base relatively small
and easier to understand initially. However, we provide smteresion built on top of the non-blocking
extension that provides optimized implementations of &lihe collectives. We have implemented most
of the algorithms presented by Thaletralin [72].

We provide a fairly complete derived data type engine for Hd®grams as an extension to the
base implementation. For example, the following code frages am n matrix using point-to-point
communication and derived data types. Note that the matixshmply a 1-dimensional Python list that is

used to store a 2-dimensional array.

A=1[00] *(n*n)

column_t = MPI_Datatype()
MPI_Type_vector(n, 1, n, MPI_DOUBLE, column_t)
MPI_Type_commit(column_t)

# send columns
for i in xrange(n):
MPI_Send((A,i), 1, column_t, rank, tag, MPI_COMM_WORLD)

# receive rows
for i in xrange(n):
MPI_Recv((A,i*n), n, MPI_DOUBLE, rank, tag, MPI_COMM_WOR LD, None)

7.3 Implementation

Rather than create a single monolithic implementation @fMPI1 Python interface, we provide a
modular framewaork in which MPI functionality can be inclutgelectively. We provide three main building
blocks: a derived data type engine, non-blocking commuimicaupport, and optimized collective commu-
nication operations. The purpose of structuring rMPI i3 thianner is two-fold: to simplify the code for the
novice and to encourage experimentation in the major subtesd

These modules are provided as derivations ofMiRé base class. User programs, in turn, are
inherited from these derived classes. Since Python suppuidtiple inheritance, a user program may specify
two different submodules as its base classes to includeosufig, say, both derived datatypes and non-
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blocking communication.

The complete rMPI source code is included in Appendix C.

7.3.1 Base Implementation

The base rMPI implementation consists of blocking poirptéint operations and non-optimized
collectives. Using River, the base supports process disgaand the mapping of River UUIDs to MPI
ranks. It provides basic support for MPlI communicators ammdigs and can redirect console output from
remote rMPI processes to the initiating process. In addiitacan display Python exceptions on the initiator
so that errors in remote processes can be detected. Fihellyase implementation supports both eager and
synchronized sends. The source code of the base impletioansshown in Appendix C.4.

Using Super Flexible Messaging (SFM) as the basic commtioicanechanism facilitates rapid
development. Since messages are dynamically typed, tharerieed to specify separate message types (as
would be done in a C implementation); everything is speciagdhe call site of a send. Figures 7.2 and 7.3
show how SFM is used to implement ow controlimpi_send_buf()  andmpi_recv_buf() , respectively,
which are the basic building blocks for all rMPI communiocatiroutines. The code fragment in Figure 7.2
allows large messages to be sent in chunks so that a compateta data buffer is not needed. The SFM
notation makes it relatively easy to implement a chunk grott@nd ensure that data is transferred in the
proper order.

All the major MPI peer-to-peer and collective functions em@lemented usingpi_send_buf()
andmpi_recv_buf() . They allow for the sending of small messages in an eageiofasinlarge messages in
a sequence of chunks. The parameters inclodfe(a list of simple valueshffset  (index intobuf ), count
(the number of values to sendptatype (the data type of the values imif ), src (the rank of the sender),
dst (the rank of the receiver}ag (an MPI idiom for naming transfers), armdmm (the communication
namespace).

The small message code sends the ehtifein a single message. By setting up the proper values
forstart ,end, andsize , as well as settin@ast to True , the receiver is given all the information needed to
process the send request. The large message code walkghhinetuf in chunksize increments. On each
iteration, the values fostart , end, andsize are updated appropriately. Once the last chunk is identi ed
last is set toTrue .
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def mpi_send_buf(self, buf, offset, count, datatype, dest , tag, comm):
destUuid = comm.rankToUuid(dest)
chunksize = self.mpi_getchunksize(datatype, count)
offset = 0

if isinstance(buf, tuple):
buf, offset = buf

sendsize = count
if sendsize <= chunksize: # small send (eager)
self.send(dest=destUuid, tag=tag, buf=buf|offset:offs et+count],
start=0, end=count, size=count, mtype="small’, last=Tru

else: # send large buf
last = False; start = offset; end = start + chunksize

while True:
self.send(dest=destUuid, tag=tag, buf=buf[start:end],
start=start-offset, end=end-offset, size=chunksize,
mtype='large’, last=last)
m = self.recv(src=destUuid, tag=tag, ack=True)

if last:
break

start += chunksize
end = start + chunksize

if (start + chunksize) >= (offset + count):
end = offset + count
chunksize = end - start
last = True

return MPI_SUCCESS

Figure 7.2: Sending Data in rMPI
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def mpi_recv_buf(self, buf, offset, count, datatype, src, tag, comm):
srcUuid = comm.rankToUuid(src)

while True:
m = self.recv(src=srcUuid, tag=tag)
if m.mtype == 'large".
self.send(dest=srcUuid, tag=tag, ack=True)

buf[m.start+offset:m.end+offset] = m.buf[0:m.size]
if m.last:
break

return MPI_SUCCESS

Figure 7.3: Receiving Data in rMPI

7.3.2 Derived Datatypes

Our derived datatype engine supports the most common MRIstymcludingcontiguous
vector , andindexed . The implementation is a seamless extension to the base&ptoas another class,
calledMPI_DD, derived from theMPI base class. User programs that need to make use of derivatgt ozt
inherit their class fronMPI_DDinstead ofMPI to include support for derived datatypes. The source code of
the derived datatypes support is presented in Appendix C.5.

Upon new datatype initialization, we create a map reprasgtihe memory regions occupied by
the new type and store it as a collectioncbunks For instance, aontiguous  type would be composed of
a single chunk of siza. By contrast, a simpleector type would be composed afchunks of size 1. The
send mechanism transparently extracts these chunks frarived datatype instance at transmission. The
current implementation usegackingscheme to construct on-the-wire data. However, the enginkl be
modi ed to support more sophisticated on-the-wire formatg., to avoid copying).

Figure 7.4 shows our implementation of thextor datatype. If the old type is a base type, we
simply create a chunk for every element. However, if the piebtis derived and we are creating a recursively
derived datatype, we need to copy the chunks from the old typ&ing sure to calculate proper offsets. For
instance, if we have a matrix, we can creatsolumntype, and then recursively another type representing
every other columof the matrix.

As we add a new chunk to a datatype map, we go through the lestisfing chunks and check
if the new chunk can be combined with an existing one. Thisoisedto minimize the total number of

chunks. Moreover, atommittime (in theMPI_Type _commit() function), we iterate through the list again
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and attempt to combine contiguous chunks. This is usefuhwéegy, a matrix type is derived from a column

type, and results in a single chunk of memory describing thtrira

def MPI_Type vector(self, count, block length, stride, o |d_type, new_type):
# old type must exist (either basic or derived)
if not mpi_types.has_key(old_type):
return MPI_ERR_ARG

# derived type: each element may have multiple chunks
if isinstance(old_type, MPI_Datatype):
n = block length * old_type.size
w = block length * old_type.width
for i in xrange(count):
offset = i * stride * old_type.width
for j in xrange(block_length):
new_type.copy_chunks(old_type, offset + j)

# base type: each element is its own chunk
else:
n = block_length
w = block_length
for i in xrange(count):
offset = i * stride
new_type.add_chunk(offset, block_length)

new_type.count = len(new_type.chunks)
new_type.size = n * count

new_type.width = w

# "register" the new type
mpi_types[new_type] = mpi_robj.next()

return MPI_SUCCESS

Figure 7.4: Implementation of the Vector Derived Datatype

7.3.3 Non-blocking Communication

Simple blocking sends and receives are relatively easy denstand. However, production MPI
implementations support non-blocking communication. isgugpport can signi cantly complicate matters.
We provide it as an extension (another derivation oMRébase class) so that it can be studied and evaluated
independently. Our code turidPl_Isend() andMPI Irecv()  calls intoTransferRequests . Only apost

97



is transmitted, but the actual communication takes placervehtransfer request is processed: at any point
a blocking call is made (e.gMPI_Wait() ). We create an instance ofteansfer managerclass, which
keeps track of outstanding requests and processes thenedsdneThis is similar to how non-blocking
communication is implemented in production single-thezhPl systems. To achieve true parallelism, a
communication thread may be introduced, as done in USFNEI Higure 7.5 shows our request processing

function. The complete source code of non-blocking comigation support is included in Appendix C.6.

7.3.4 Optimized Collectives

Due to the requirements of optimized collectives, they aiit bn top of non-blocking commu-
nication. Thus, it is derived from thdPI_NB class, rather than the bal®| class. We have implemented
many of the algorithms from [72] as well as disseminatiogather [7]. Exploring and evaluating optimized
collectives in rMPI is quite easy since Python provides agmtmmpact notation that is more pseudo-code-
like when compared to C. For example, we have implementedthek allgather algorithm, shown in
Figure 7.6. The source code of the optimized collectivedémpentation is shown in Appendix C.7.
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def trans_process_request(self, request):
if request.trans_status == TRANS_STAT_DONE:
self.transManager.unregister(request)
return

# a confirmed send request and the first chunk is not sent yet
if request.type == MPI_REQ_SEND and \
request.trans_status == TRANS_STAT _WORK and \
request.trans_chunknum ==
self.trans_send_chunk(request)

while (request.trans_status != TRANS_STAT DONE):
p = self.recv(dest=self.uuid,
mtype=(lambda x: x=='sendpost' or x==recvpost' or \
x=='send' or x==recv'))
srcRank = self.uuidToRank[p.src]
if p.mtype == "sendpost" :

recvreq = self.transManager.recvready(srcRank, p.tag, p .sender)
elif p.mtype == "recvpost”.
sendreq = self.transManager.sendready(srcRank, p.tag, p .recver)

# if sendreq is not registered yet,
# this post will be save in transManager.recvqueue
if sendreq != None:

self.trans_send_chunk(sendreq)

elif p.mtype == "send":
req = self.transManager.getreq(p.recver)
self.trans_recv_packet(p, req)

elif p.mtype == "recv".
sendreq = self.transManager.getreq(p.sender)

self.trans_send_chunk(sendreq)

self.transManager.unregister(request)

Figure 7.5: Non-blocking Request Processing Function iRIrM
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def MPI_AG_Bruck(self, sendbuf, sendcount, sendtype, rec vbuf, recvcount,

recvtype, comm):
msgUid = self.getMsgUid()
size = comm.size()
power2 = math.floor(math.log(size, 2))
steps = int(math.ceil(math.log(size, 2)))
status = [MPI_Status(), MPI_Status()]
recvbuf[0:sendcount] = sendbuf
sendindex = 0

for step in xrange(steps):
recvindex = 2**step * sendcount

if (step == power2):

sendcnt= (size - 2**step) * sendcount
else:

sendcnt = 2**step * sendcount

destNode = (self.rank.value - 2**step) % size
srcNode = (self.rank.value + 2**step) % size
send_req = MPI_Request(); recv_req = MPI_Request()

MPI_lIsend((recvbuf,sendindex), sendcnt, sendtype, dest
comm, send_req)

MPI_Irecv((recvbuf, recvindex), sendcnt, recvtype, srcN
comm, recv_req)

MPI_Waitall(2, [send_req, recv_req], status)

if self.rank.value > 0: # reorder
for i in xrange(size - self.rank.value):
recvbuf.extend(recvbuf[:sendcount])

del recvbuf[:sendcount]

return MPI_SUCCESS

Node, msguid,

ode, msgUid,

Figure 7.6: The Bruck Allgather Algorithm in rMPI
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7.4 Comparison with other Python MPI packages

There are several MPI packages available for Python; allehtare Python bindings to a C/MPI
library, rather than an implementation from scratch likePiIMThe most popular ones are pyMPI [42],
MYMPI [36], and PyPar [46]. We examine all three packages emmipare them to rMPI. Of the three,
MYMPI adheres most closely to the MPI standard, however, @liewe that rMPI is superior in this regard.
We found all three packages lacking in the functionalitytheovide: MYMPI is again the most complete,
implementing 30 of the 120+ MPI calls, but still lacks suchtfees as collective communication operations.
For comparison, rMPI implements 48 MPI calls, including fidacking and collective communication
operations.

The pyMPI package is a special version of the Python int&gpedong with a module. Programs
written in pyMPI do not calMPL_Init() . Instead, it is called implicitly when the interpreter isihehed,
somewhat breaking the MPI standard semantics. In contk&sMPI and PyPar are only modules that
can be used with a standard Python interpreter. In MYMPIgrams explicitly callMPl_Init) . PyPar
resembles the C MPI interface the least and also invbdiRsinit)  implicitly.

There is a fundamental difference in the semantics of pyMidithe other two packages. While
pyMPI as the interpreter is a parallel application, with MPMand PyPar, the code executed by the standard
interpreter is the parallel application. MYMPI and PyPar mruch smaller since they are composed of only
one Python module, not a full interpreter.

MYMPI claims to match more closely the syntax of C and Fortrem pyMPI and PyPar. MYMPI
arguments are explicit but many conventions are broken. ekample, buffer references are returned by
MPI_Recv() and other communication functions instead of error codath gyMPI many arguments, such
as communicator and status, are implicit and omitted. We\aekthat rMPI is superior in adherence to the
true MPI semantics and syntax, when compared to the otheniviitipers.

To compare, let us examine the invocationMbfi_Recv in all the packages. The C prototype and
invocations in pyMPI, PyPar, MYMPI, and rMPI are shown in [EaB.1.

With pyMPI most arguments are implicit and are, in fact, ¢edtfrom the function calls. For
instance, the communicator is always assumed tbiPieCOMM_WORLAENd it is not possible to specify a
different one. As such, the only parameter passed in is tileahsource from which to receive. The return
value is the buffer where the received data is stored. Trer®isupport for specifying tags or custom
communicators or datatypes. Thus, there is no support foretkdatatypes either. Likewise, PyPar lacks
the support for all three. Again, it is only possible to spethe source rank and the return value is the
buffer where data is stored.

MYMPI allows the programmer to pass in a datatype as well eyaahd a communicator. It
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| Package| Semantics \

C MPI int MPI _Recv(void *buf, int count, MPI _Datatype datatype,

int source, int tag, MPI _Comm comm, MPIStatus *status);
pyMPI | buf = mpi.recv(source)

PyPar | buf = pypar.receive(source)

MYMPI | buffer = mpi.mpi  _recv(count, datatype, source, tag, communicator)

rMPI rv = self MPI  _Recv(buf, count, datatype, source, tag

communicator, status)

Table 7.1:MPI_Recv() Semantics in Various MPI Implementations

should be noted, however, that only basic types, such astegeinor a double, are supported. The return
value is once again a buffer reference, not an error code. ch@inges the order of arguments, simdér
needs to be speci ed as the rst argument. Also, the lastmeut,status , is completely omitted.

On the other hand, rMPI preserves all arguments and thear eodsimplify porting existing code
to and from C. An object of typ#IPI_Status() is used in places where a pointerstatus is passed in,
as described in Section 7.2, Mone can be speci ed in place MULL Finally, rMPI provides considerable

support for derived datatypes, as presented in Sectiod.7.3.

7.5 Experimental Results

We have compared the performance of rMPI with MYMPI, as welCAVIPI, using our Conjugate
Gradient (CG) benchmark. We ran all versions of the CG sabvern small cluster to see what kind of
speedup is possible. Our experimental platform consistea \@arying number of identical nodes of a
cluster. Each node was equipped with dual Opteron 270 dwaljorocessors, 4 gigabytes of RAM, and
Gigabit NIC, and all were connected to an isolated Gigaliivoek. For all the experiments we used Python
2.4.3 and executed tests with Heoption (optimization turned on). The C/MPI version was cdegpwith
-02. To obtain results for 32 VMs we ran four instances of the paogon each of the eight nodes.

We have implemented a parallel conjugate gradient (CGesatvboth rMPI and MYMPI, com-
piled to use the LAM MPI library. We chose to use MYMPI in oustiag, rather than pyMPI or PyPar,
because it was the most complete and stable implementatiohmost closely followed the MPI standard.
Additionally, we provide the performance of a C/MPI CG solaad the River Core version for reference.
A matrix size of 2048 2048 doubles was used as input. Table 7.2 presents theparioe and speedup
of all four versions. Figure 7.7 shows a graph of the absqletéormance, and Figure 7.8, of the speedups.
The results shown are an average over three runs.

It is worth noting that the absolute performance of MYMPI aktPI is approximately the same.
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| VMs | 1] 2] 4] 8] 16| 32]

rMPI time 6371| 3433| 1757| 959 | 569 | 491
rMPI1 speedup 1.00| 1.86| 3.63| 6.64| 11.20| 12.98
River time 6375| 3389| 1704| 917| 505| 443
River speedup 1.00| 1.88| 3.74| 6.95| 12.62| 14.39
MYMPI time 6322 | 3776| 1860| 962 | 498| 273
MYMPI speedup|| 1.00| 1.67| 3.40| 6.57| 12.69]| 23.16
C/MPI time 81.95| 42.04| 24.63| 25.32| 16.22| 11.41
C/MPI speedup 1.00| 195| 3.32| 3.23| 5.05| 7.18

Table 7.2: rMPI Conjugate Gradients Solver Results (sexond

This is to be expected, since the computation is done in Rytbeen though MYMPI uses the C MPI
implementation for communication, whereas rMPI does dawimg in Python. As the number of VMs
increases, so does the ratio of communication to computafibus, we see decreased performance of rMPI
compared to MYMPI in the case of 32 VMs. When compared withGheersion, the rMPI implementation
appears to exhibit better speedup. However, this is bedauséP| computation in Python dominates the
cost of communication. In C, the cost of communication begondominate much sooner. The absolute
performance of rMPIl and MYMPI for this problem is about 75e¢srslower than the C MPI implementation

on average.
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Figure 7.7: rMPI Conjugate Gradients Solver Performance
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Chapter 8

Conclusions and Future Work

This chapter presents some concluding remarks, re ectionsur experience with River devel-

opment, and offers directions for future work.

8.1 Experience with River Development

River has been a very enjoyable project to work on. It is onicesie hope that it will continue its
existence beyond this thesis. It has already been usedssigitg in graduate parallel computing classes
at USF. Trickle, for example, together with the Python Inngdiibrary [52], has been used for distributed
image processing and movie creation. We would like to opethapvhole River framework and its com-
ponents to further developments by releasing it as an opemcegroject. To that extent, we have made
the distribution freely available on our website [66] angesal people have already expressed interest in
integrating it with their projects.

Compared to previous parallel and distributed systemsriswinique in its ability to allow a pro-
grammer to quickly move from a new idea to a working prototyfignegative consequence of prototyping
with conventional languages is that the programmer becdmédo the design decisions at an early stage
because making changes to the core of a run-time system casuizstantial engineering effort. River, by
contrast, was speci cally designed to allow consideralilanges and additions with a minimal amount of
work. The simplicity and elegance of the River core combinéith Python's dynamic typing and concise
notation make it easy to rapidly develop a variety of palalla-time systems. Largely, this is a testament
to Python's exibility and ease of use.

The choice of using Python as the implementation languagepn@bably most instrumental to
River's success. Certainly, Python has its own disadvastdgr systems development, most notable of

which is performance. Yet, in our opinion, the exibility drease of modi cation that Python allows far
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outweigh the performance drawbacks. On several occasimgyere able to move from a discussion of a
feature or modi cation to its implementation within mingteoractically modifying River "on the y!”

The single most important piece of the River framework isautitedly the Super Flexible Mes-
saging (SFM) mechanism. It allowed us to transmit arbitidaia without spending any time on protocol
design. Again, this would not be possible without languagepsrt. When designing the SFM framework
itself, we wanted an ef cient send/receive mechanism so a@did to build our underlying protocol on
top of sockets. Prior experience in implementing MPI fromasth [12] led us to focus on developing a
xed message structure at rst. However, we did not yet knolwatvwe wanted in the message structure
and concluded that a lazy approach would be best to encousage development, so we decided that a
message could hold anything. Python's exibility and easeige has allowed to us to experiment with
different approaches in a short amount of time. River attsrtgpconform to the same ease-of-use princi-
ples. For example, the SFM concept has been extremely stfictisfacilitating rapid development of both
distributed run-time systems (RAI, Trickle, rMPI) and apgtions.

When running our experiments, we noticed that our simpleadisry mechanism was not robust
enough in its original implementation to reliably locatenthan 12-16 VMs. Python's and River's exi-
bility allowed us to easily modify our code within minutesrtake discovery more robust by sending out
more than one discover request. In the end, we were ableiablsetiiscover 96 River VMs running on 24
nodes on a gigabit network with just ve discover requests.

Such exibility of the underlying run-time system certajrlends itself to River's usage for edu-
cation in parallel programming classes, where student$ezan about implementing a parallel system and
quickly move from an idea to experimentation with an exgtaystem without having to design something
from scratch. River's design has been an ongoing processdppened in parallel with its implementation
and we believe it is well thought-out and easy to understand.

Additionally, the code base is relatively small; the Rivereis under 3000 lines of code and
under 6000 lines with all the extensions, including rMPIbl&a8.1 shows the lines of code counts of River
components. A similar project done in C would consist of sehvilnousand lines of code.

River Core| 2744
RAI 535
Trickle 352
rMPI 1987

Table 8.1: Lines of Code of River Components
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8.2 Future Work

While River is certainly usable in its present state, it vaogileatly bene t from additional features.
To that extent, we think there are several directions woxgiaging.

While we were able to make our discovery mechanism more tdijusending out multiple re-
guests, this solution will not scale well. A better solutimould be some sort of a tree broadcast, or the
election of a "master” VM to keep track of VMs coming and leayiand maintain a list that would then be
provided to initiators upon request, such as dineup membership protocotlescribed in [9]. This would
avoid the delay currently present during the discovery time potentially scale to hundreds of nodes.

The SFM model is an excellent approach to specifying andinétting arbitrary data but addi-
tional constructs to express various conditions would belotal. For example, there is no way to apply
logical constraints across multiple message elds. Redcath Chapter 3 that SFM allows us to match a

message based on multiple values of an attribute usiagtala function.

m = recv(tag=lambda x: x == 23 or x == 42)

However, this only allows matching on a subsetook attribute; there is currently no way to
specify that on®r another attribute should be matched. For example, if we teamiatch a message based
on its sourcer its tag, the current semantics do not give us a way to accemfiiat. One possibility would
be to augment the SFM semantics and introduce a reservedkeyakgument, such &R whose value

would be a tuple of possible attribute matches.

m = recv(OR=(tag=42, src=A))

This would provide logical OR semantics across multiple sage attributes. Specifying addi-
tional attributes in theecv() function call would continue serving as a logical AND coiwtit as it does
currently.

River would also bene t from additional support for faulleécance. As discussed in Section 4.5,
there exists a version of the framework built on top of Stes&lPython [73, 69] and described in [6].
However, that branch of the code needs to be completed aotbugly tested. Once completed, it will
provide state management for River applications, allowthiem to be checkpointed or even seamlessly
moved to another VM.

To improve performance of River applications, there cowddatRiver/Python to C translator. It

could be more speci ¢ and target, for instance, MPI appiiet to facilitate going from rMPI1 to C/MPI.
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Another idea would be to rewrite the River Core in RPython] [@restricted subset of Python that can
be easily translated to C). A River Core engine with SFM supparitten in C, would also be bene cial.
Implementing SFM in C would require additional support far extended syntax, however.

To better support multi-core and multi-processor machiResger could be implemented on top of
the newmultiprocessing Python module [58]. Theultiprocessing module is a package that supports
spawning processes using an API similar tottiteading module, currently used in River. It effectively
uses subprocesses, instead of threads, thereby avoidiimgrpance drawbacks associated with the Python
thread model. Queues or pipes are used for synchronizatidc@mmunication between processes. Since
the data will be located on the same machine, no network conimation is necessary and this will simplify
the River code and improve performance. Furthermore, angtbssibility is to use thmultiprocessing
module to completely eliminate threads from River and eplhem with subprocesses. Thus, there would
be a separate subprocess running the network receiveduaratid yet another one running the Control VR.
Communication between them can be achieved using sharedmegueues, and pipes. In many cases
(refer to the source code in Appendix B.2), the threads aotlyresynchronize using a local socket, so the
change to subprocesses will not affect the code much. Thgestignodi cation would involve rewriting our
Queue implementation to support subprocesses instead of threads

Additional performance improvements can come from usimgntew Python Buffer API [60] for
communication. This API can be used by an object to exposkaitsin a raw, byte-oriented format. Clients
of the object can use the buffer interface to access the totigga directly, without needing to copy it rst.
Avoiding the extra copy would speed up the communicatioméwaork in River and all its extensions.

As discussed in Chapter 4, we assume a secure network anddahusy little to guarantee data
security and integrity. River would certainly bene t fromnaore stringent security model, perhaps with
underlying support for secure transport mechanisms, ssi@84.

Finally, River can be used as the underlying engine in a ckyslem. Projects like Google's
App Engine [2] present a very restricted Python environnfienserving web pages and web applications.
River can be adapted to serve the purpose of virtualizingteta in the Cloud and presenting a platform for

distributed cloud computing.
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ST1

print '%s > master' % self.host, self.uuid
print '%s > slaves:' % self.host, self.slaves
numslaves = len(self.slaves)

print '%s > sending work to %d slaves' % (self.host, numslave
for uuid in self.slaves:
self.send(dest=uuid, tag="n', n=n/numslaves)

A d A in_circle = 0
ppen IX print '%s > receiving %d results' % (self.host, numslaves)

while numslaves > 0:
p = self.recv(tag="result)
in_circle += p.result
numslaves -= 1

Examples Source Code

Pl = 4.0 * math.atan(1.0)
print 'PI = %f, our approximation = %f' % (PI, pi)

def slave(self):
print '%s > slave' % self.host, self.uuid
master = self.parent

This appendix presents the complete source code to samyde R

print '%s > waiting for work' % self.host
programs from Chapter 3. p = self.recv(src=master, tag="n")

print '%s > got work: N=%d' % (self.host, p.n)

in_circle = 0
H H for i in range(0, p.n):
A.1 Monte Carlo Pi Calculator [mcpi.py] ‘= 20 % randomandom( - L0
y = 2.0 * random.random() - 1.0
import math, random, time, socket, sys length . sqr = x * x + y *y
from river.core.vr import VirtualResource if length_sqr <= 1.0: in_circle += 1
class MCpi (VirtualResource): print '%s > sending results' % self.host
def __init_ (self, **kwargs): self.send(dest=master, result=in_circle, tag="result'
VirtualResource.__init__(self, **kwargs)
self.host = socket.gethostname() def main(self):
print 'MCpi master/slave version starting'
def vr_init(self): print * my UUID:, self.uuid
if len(self.args) < 2: print ' args: ', self.args
print ‘usage: %s <n>' % self.args[0]
return False if len(self.slaves) < 1:
print 'ERROR: need at least one slave'
print '%s > Deploying MCpi' % self.host return -1
VMs = self.allocate(self.discover())
for vm in VMs: stime = time.time()
print ' %s: %s %s %s %s %s %s' % (vm[host], vm[version', self. master(int(self.args[1]))
vm['os'], vm['arch], vm[pyver], vm[status’], vm['us er]) fime = time.time()

print '%s>  %s seconds' % (self.host, ftime-stime)
VMs = self.deploy(VMs=VMs, module=self.__module__, func ='slave’)

self.slaves = [vm['uuid] for vm in VMs]

return True

def master(self, n):
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A.2 Word Frequency Counter [wfreq.py]

import time, socket
from river.core.vr import VirtualResource

class WFreq (VirtualResource):
def __init_ (self, **kwargs):
VirtualResource.__init__(self, **kwargs)
self.host = socket.gethostname()

def vr_init(self):
VMs = self.allocate(self.discover())
VMs = self.deploy(VMs=VMs, module=self.__module__, func ='worker")

self.workers = [vm['uuid] for vm in VMs]
return True

def worker(self):
p = self.recv(src=self.parent, tag="files')

m = {
for file in p.files:
self.wordcount(file, m)

count = 0
for w in m: count += m[w]

print '%s> local count %d' % (self.host, count)
self.send(dest=self.parent, tag="result', result=m)

def wordcount(self, filename, m):

print '%s> %s' % (self.host, filename)
f = open(filename)
for I in f:

tokens = l.split()

for t in tokens:

m[t] = m.get(t, 0) + 1

f.close()

def main(self):
if len(self.args) < 2:
print ‘usage: %s <files>' % self.args[0]
return

files = self.args[1:]

slices = {}

size = len(self.workers)
slice = len(files) / size
extras = len(files) % size

end = 0
for worker in self.workers:
beg = end

end = beg+slice
if extras:

end += 1
extras -= 1
slices[worker] = files[beg:end]

stime = time.time()

for worker in self.workers:
self.send(dest=worker, tag="files', files=slices[work

m = {}
for worker in self.workers:
p = self.recv(tag="result)
rm = p.result
for w in rm:
m[w] = m.get(w, 0) + rm.get(w, 0)

count = 0
for w in m: count += mw]

print '%s> global count %d' % (self.host, count)
fime = time.time()
print '%s> %s seconds' % (self.host, (ftime - stime))

A.3 Conjugate Gradients Solver [rcg.py]

import sys, time, getopt, operator
from river.core.vr import VirtualResource

class rConGrad (VirtualResource):
def vr_init(self):
vmlist = self.deploy(self.allocate(self.discover()),
module=self. __module__, func='worker')

print ‘deployed on %d VMs' % len(vmlist)
for vm in vmlist:
print ' %s' % vm[*host]

self.workers = [vm['uuid] for vm in vmlist]
return True

def worker(self):
# receive the parameters from parent / master / process 0
p = self.recv(src=self.parent, tag="init')

verbose = p.verbose
self.peers = p.peers
globaln = p.globaln
t = pt

iters = p.iters

np = len(self.peers)
n = globaln / np

er])
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if verbose:
print globaln, t, iters
print self.peers

# remove self from peerlist
# this really only matters to master (process 0)
self.peers.remove(self.uuid)

# receive a piece of matrix A

p = self.recv(src=self.parent, tag='A")
A =pA

if verbose:

print_matrix(A)

# receive a piece of vector b
p = self.recv(src=self.parent, tag="b")
b =pb
if verbose:
print_vector(b)
k=0
x =1[0.0] *n
r=>b
dp = self.pdot(r, r)
dp0 = dp
while dp > t and k < iters:
k+=1
if k ==1:
p =]
else:

beta = dp / dpO
p = daxpy(beta, p, r)

s = self.pmatmul(A, p)
alpha = dp / self.pdot(p, s)
x = daypx(alpha, X, p)

r = daypx(0 - alpha, r, s)

dp0 = dp
dp = self.pdot(r, r)

# send results to parent
self.send(dest=self.parent, tag='done’, k=k, x=x)

def pdot(self, x, y):
local = dot(x, y)

if self.uuid != self.parent:
self.send(dest=self.parent, local=local, tag="pdot’)
p = self.recv(src=self.parent, tag="allreduce’)
return p.result

else:
for w in self.peers:
p = self.recv(tag="pdot’)

local += p.local

for p in self.peers:
self.send(dest=p, result=local, tag="allreduce')
return local

def pmatmul(self, A, x):
# we need to gather the global x here

if self.uuid != self.parent:
self.send(dest=self.parent, x=x, tag='pmatmul’)
p = self.recv(src=self.parent, tag="allgather)
globalx = p.globalx

else:
globalx = x[]
for w in self.peers:
p = self.recv(src=w, tag="pmatmul’)
globalx += p.x

for w in self.peers:

self.send(dest=w, globalx=globalx, tag="allgather)

return matmul(A, globalx)

def main(self):
verbose = False

opts,args = getopt.getopt(self.args[1:], 'V
for o,a in opts:
if o == "-v verbose = True

if len(args) < 1:
print 'usage: %s [-v] <input file>' % self.args[0]
return

# since initiator / process 0 will be doing work too,
# we'll make it seem like he is no different from
# other VRs... MPI-style :)

self.parent = self.uuid

self.workers.insert(0, self.uuid)

np = len(self.workers)

# read parameters

f = open(args[0])
globaln = int(f.readline())
t = float(f.readline())
iters = int(f.readline())

if globaln % np != 0:

print ‘error: matrix order should be evenly divisible',

print 'by number of processors'
return

n = globaln / np
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# send parameters and piece of matrix A to each VR, including
# ourselves
for w in self.workers:
A = [read_vector(f, globaln) for i in xrange(n)]
self.send(dest=w, tag='init', peers=self.workers, glob
t=t, iters=iters, verbose=verbose)
self.send(dest=w, tag='A', A=A)

# read in vector b
b = read_vector(f, globaln)

# send a piece of vector b to each VR
for i, w in enumerate(self.workers):
self.send(dest=w, tag="b', b=hb[i*n:(i+1)*n])

f.close()
stime = time.time()

# we are no different than anyone else now, let's
# do some work!
self.worker()

# receive piece of the answer from each worker
x =1
for w in self.workers:

p = self.recv(src=w, tag="done')

X += pX

k = pk

fime = time.time()

print 'Solution found in %d iterations (%.2f s)' % (k, ftime-
if verbose:
print_vector(x)

def print_vector(v):
for i in v
print '%.2f" % i

def print_matrix(m):
for row in m:
for i in row:
print '%.2f ' % i,
print

def read_matrix(f, n):
return [read_vector(f, n) for i in xrange(n)]

def read_vector(f, n):

v=]

while len(v) < n:
line = "
while not line:

aln=globaln,

stime)

line = f.readline().strip()
v += [float(x) for x in line.split()]
return v

def dot(x, y):
return reduce(operator.add, map(operator.mul, X, y))

def daxpy(alpha, x, y):
return map(lambda x,y: alpha * x + vy, X, V)

def daypx(alpha, x, y):
return map(lambda x,y: alpha * y + x, X, V)

def matmul(A, x):

return [reduce(operator.add, map(operator.mul, row, x)) for row in A]

def dotO(x, y):
sum = 0.0

for i in xrange(len(x)):
sum += X[i] * y[i]

return sum
def daxpyO(alpha, X, Y):
for i in xrange(len(x)):
X[i] = alpha * x[i] + y[i]

return x

def matmulO(A, x, y):
n = len(A)

for i in xrange(n):
ylil = 0.0
for j in xrange(n):

ylil += AQill] * ]
return y

if _name__ =="' main_"
main()

A.4 Remote Dictionary Extension [remdict.py]

from river.core.vr import VirtualResource

class DistributedDictionary (VirtualResource):
def __ getitem__(self, key):
self.send(dest=self.parent, action='get', key=key)
p = self.recv(src=self.parent, key=key)
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return p.value

def __ setitem__(self, key, value):
self.send(dest=self.parent, action='set’, key=key, val ue=value)

def vr_init(self):
selfm = {} ; deployed =[] ; end = 0

VMs = self.discover()

if len(VMs) ==
print 'ERROR: Need at least one worker VM'
return False

VMs = self.allocate(VMs)

files = self.args[1:]
slice = len(files) / len(VMs) ; extras = len(files) % len(VMs )

for worker in VMs:
beg = end ; end = beg+slice
if extras:
end += 1 ; extras -= 1

deployed += self.deploy(VMs=[worker],
module=self.__module__, func="ddmain’, args=files[beg :end])

self.peers = [vm['uuid] for vm in deployed)]
self.startfunc = self.serve

return True

def ddmain(self):
self.main()
self.send(dest=self.parent, action="done’)

def serve(self):
done = 0
while done < len(self.peers):
p = self.recv()
if p.action == 'get"
v = self.m.get(p.key, 0)
self.send(dest=p.src, key=p.key, value=v)
elif p.action == 'set"
self.m[p.key] = p.value
elif p.action == 'done"
done += 1

for k, v in self.m.items():
print '%016s : %d" % (k, v)

A.5 Ping-pong Benchmark [pingpong.py]

import time, getopt
from river.core.vr import VirtualResource

from river.core.oneq import QueueError

class PingPong (VirtualResource):
def pong(self):
p = self.recv(src=self.parent, tag="init')

iters = p.iters
reply = p.reply
bytes = 0

stime = time.time()

i=0
while i < iters:
p = self.recv()
bytes += len(p)
if reply:
bytes += self.send(dest=p.src, seq=p.seq, data=p.data)
i+=1

fime = time.time()
t = ftime - stime

print '%d bytes processed % (bytes)
print ‘total: %.4f s, per iteration: %.4f s' % (t, t/iters)
print ‘bandwidth: %.2f mbps' % (bytes/t/131072)

def main(self):
bufsize = 65536 ; iters = 4096 ; reply = True
recv = self.recv

try:
opts, args = getopt.getopt(self.args[1:], n:l:vh',
[ttep', ‘async', 'help’)
except getopt.GetoptError, e:
print 'ERROR, e
return -1

for o, a in opts:

if o == "n": iters = int(a)

elif o == "I bufsize = int(a)

elif o == "--ttcp": reply = False

elif o == '--async" recv = self.recv_nb

elif o == "-h' or 0 == "-help" return self.usage()

discovered = self.discover()

if len(discovered) < 1:
print 'ERROR: need one other VM'
return -1

vm = discovered[0:1]
deployed = self.deploy(self.allocate(vm), module=self.
func="pong’)

if len(deployed) < 1:
print 'ERROR: deployment failed'
return -1

__module__,
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vm = deployed.pop(0)
child = vm['uuid]
print 'Pinging’, vm

self.send(dest=child, tag="init', iters=iters, reply=r eply)
buffer = 'R" * bufsize

bytes =0;i=0;j=0
stime = time.time()

while i < iters:
bytes += self.send(dest=child, data=buffer, seq=i)
if reply:
try:
p = recv()
bytes += len(p)
j+=1
except QueueError:
pass

i+=1
if reply:

print '%d outstanding replies' % (iters - j)
while | < iters:

p = self.recv()
bytes += len(p)
j+=1

fime = time.time()
t = ftime - stime
rtt = t / iters * 1000000

print '%d bytes processed' % (bytes)

print 'buffer size: %d, iterations: %d' % (bufsize, iters)
print 'total: %.4f s, per iteration: %.4f s' % (t, t/iters)
print 'bandwidth: %.2f mbps' % (bytes/t/131072)

print 'latency: %.5f us' % (rtt/2)

def usage(self):

print 'usage: %s [options]' % self.args[0]

print

print 'Options:'

print ' -h [--help] . this message'

print ' -n <n> . number of iterations to run'
print ' -l <n> . buffer size to use'

print ' --ttcp . emulate ttcp behavior (no replies)'
print ' --async . asynchronous replies'

return -1

A.6 Word Frequency Counter with Trickle [wfreg-

trickle.py]

import sys, time, glob, operator

def wordcount(files):
m = {
for filename in files:
f = open(filename)
for | in f:
tokens = l.split()
for t in tokens:
m[t] = m.get(t, 0) + 1
f.close()

return m
if len(sys.argv) < 2:
print 'usage: %s <files>' % sys.argv[0]
sys.exit(1)
print ‘WFreq starting...'
stime = time.time()
vrlist = connect()
files = glob.glob(sys.argv[1] + *)
slices = {}
np = len(vrlist)
slice = len(files) / np
extras = len(files) % np

end = 0

for vr in wrlist:

beg = end
end = beg+slice
if extras:
end += 1
extras -= 1

slices[vr] = files[beg:end)]
[vr.inject(wordcount) for vr in vrlist]

handles = [vr.fork(wordcount, slices[vr]) for vr in vrlist
rvlist = [h.join() for h in handles]

m={
for rm in rvlist:
for w in mm:

m[w] = m.get(w, 0) + rm.get(w, 0)

count = reduce(operator.add, m.values())
fime = time.time()
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print 'global count %d' % count
print '%s seconds' % (ftime - stime) mec.execute('freqs = wordcount(files)')
vlist = mec.pull(‘fregs’)

m={
for rm in rvlist:
for w in rm:

A.7 Word Frequency Counter with IPython [wfreg- miw] = m.get(w, 0) + m.get(w, 0)

H count = reduce(operator.add, m.values())
Ipy py] ftime = time.time()

import sys, time, glob, operator print ‘global count %d' % count

from IPython.kernel import client print '%s seconds' % (ftime - stime)

def wordcount(files):
m = {}
for filename in files:
f = open(filename)
for | in f:
tokens = l.split()
for t in tokens:
m[t] = m.get(t, 0) + 1
f.close()

return m

if len(sys.argv) < 2:
print 'usage: %s <dir>' % sys.argv[0]
sys.exit(1)

print 'WFreq starting...'

stime = time.time()

mec = client.MultiEngineClient()

vrlist = mec.get_ids()
print 'total of %d clients' % len(vrlist)

files = glob.glob(sys.argv[1] + *)
slices = {}

np = len(vrlist)

slice = len(files) / np

extras = len(files) % np

end = 0
for vr in vrlist:
beg = end
end = beg+slice
if extras:
end += 1
extras -= 1

slices|vr] = files[beg:end]
mec.push_function(dict(wordcount=wordcount))

[mec.push(dict(files=slices|vr]), targets=vr) for vr in vrlist]
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try:
if kwargs[func’] != 'run"
self.startfunc = getattr(self, kwargs[‘func'])
except KeyError:
pass

self.user = getpass.getuser()

Ap p en d |X B selfq = OneQueue()

# by default we use the 'quick’ queue get
self.recv = self.q.getnoch

self.recv_nb = self.q.get_nb

self.peek = self.q.peek

River Core Source Code

self.lde = None

# by default we are an application VR
self.sysvr = False

. . . . self.vm.register(self.uuid, self
This appendix presents the source code to the River rungsystem. gister )

def send(self, **kwargs):
if kwargs.has_key('src'):
raise RiverError, 'src is a reserved keyword'

B.1 Virtual Resource Base Class [vr.py]

if not kwargs.has_key('dest):
raise RiverError, 'dest keyword is required'

import time, getpass, inspect, traceback, types
from threading import Thread, Condition kwargs['src] = self.uuid
from river.core.oneq import OneQueue
from river.core.uuid import uuidgen return self.vm.send(**kwargs)
from river.core.options import *
from river.core.errors import * def mcast(self, **kwargs):
from river.core.debug import DBG if kwargs.has_key('src):

raise RiverError, 'src is a reserved keyword'
class VirtualResource (Thread):

ANY = lambda x,y: True kwargs['src'] = self.uuid
def __init_ (self, **kwargs): return self.vm.mcast(**kwargs)
Thread.__init__(self)
self.vm = kwargs[vm’] def regcb(self, **kwargs):
try: # if we set a callback, we have to use the 'slow' get
self.uuid = kwargs['uuid’] self.recv = self.q.get
except KeyError:
self.uuid = uuidgen() return self.q.regcb(**kwargs)
try:
self.setName(kwargs['name’]) def unregch(self, **kwargs):
except KeyError: return self.q.unregch(**kwargs)
pass
def setVMattr(self, key, value):
self.parent = kwargs.get(‘parent’, None) return self.vm.setVMattr(key, value)
self.args = kwargs.get(‘args', [self.getName()])
self.label = kwargs.get('label) def discmatch(self, packet, attrs):

for a in attrs:
self.startfunc = self.main
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try:
if isinstance(attrs[a], types.FunctionType) or \
isinstance(attrs[a], types.MethodType):
if not attrs[a](packet[a]):
return False
elif packet[a] != attrs[a]:
return False
except KeyError:
return False

return True

def discover(self, **kwargs):
tests = {}
for k in kwargs.keys():
if isinstance(kwargs[k], types.FunctionType) or \
isinstance(kwargs[k], types.MethodType):
tests[k] = kwargs[k]
kwargs[k] = *

if len(kwargs) ==
kwargs['status’] = ‘available'
kwargs['user] = self.user
kwargs[label] = self.label

# when all VMs are returned, not everyone may be available
# for deployment (busy, wrong user, etc.)
self.discVMs = {}

kwargs['type'l = '__control__'
kwargs['‘command] = 'discover'

self. mcast(**kwargs)
time.sleep(DISCWAIT)

while self.peek(type="__control__', command="discover
p = self.recv(type='__control__', command="discover’)
if self.discmatch(p.attributes, tests):
self.discVMs[p.src] = VMdesc(p.attributes)

return self.discVMs.values()

def allocate(self, VMs):
# we allocate where we are told. it is up to the user to
# verify that all the nodes requested were indeed allocated
self.allocVMs = {}

for vm in VMs:
self.send(type="__control__', command="allocate’, use
label=self.label, dest=vm['cvr])

n = len(VMs)
while n:
p = self.recv(type='__control__', command="allocate')

r=self.user,

vmdesc = self.discVMs[p.src]
if p.result == 'success"
vmdesc['uuid] = p.newuuid
self.allocVMs[p.src] = vmdesc
else:
print ‘allocate failed for', vmdesc['host], p.result
n-=1

if len(VMs) != len(self.allocVMs):
raise RiverError, 'Unable to allocate requested VMs'

return self.allocVMs.values()

def deallocate(self, VMs):
for vm in VMs:
self.send(dest=vm['cvr'], type="__control__', command

def deploy(self, VMs, module, func="run', args=[]):
self.depVMs = {}

# get the source code for the module

mod = __import__(module)

fname = mod._ file__

if fname.endswith('.pyc’) or fname.endswith('.pyo’):
fname = fname[:-1]

f = open(fname)

src = fread()

f.close()

if not args:
args = self.args

for vm in VMs:
self.send(type="__control__', command="deploy’, modul
func=func, args=args, source=src, user=self.user,
lde=self.Ide, dest=vm['cvrT)

n = len(VMs)
while n:
p = self.recv(type="__control__', command='deploy')

vmdesc = self.allocVMs[p.src]
if p.result == 'success"
self.depVMs[p.src] = vmdesc
else:
print ‘deploy failed for', vmdesc[host], p.result

n-=1

if len(VMs) != len(self.depVMs):

raise RiverError, ‘Unable to deploy to requested VMs'

return self.depVMs.values()

def run(self, *args):

='deallocate’)

e=module,
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name = self.getName()
DBG(‘general’, '=== %s STARTING ===, name)

try:

self.startfunc(*args)
except Exception, e:

traceback.print_exc()

DBG('general', '=== %s FAILED ===', name)
else:

DBG('general', '=== %s COMPLETED ===, name)

try:
from river.extensions.remote import RemoteObject
# delete remote objects, if any
for x in dir(self):
if isinstance(getattr(self, x), RemoteObject):
del self.__dict_ [x]
except ImportError, e:
print 'WARNING: RAI extensions not available:', e
print * NOT cleaning up remote objects'

self.send(dest=self.vym.control.uuid, type="__control '
command="vr_exit')

def main(self):
print '[main] Override this method in subclass'

class VMdesc(object):

def __init_ (self, attributes):
self.attrs = attributes

def _ getitem__(self, key):
return self.attrs[key]

def __ setitem__(self, key, value):
self.attrs[key] = value

def _ repr_ (self):
return '%s on %s' % (self.attrs['cvr], self.attrs['host' )}

def has_key(self, key):
return self.attrs.has_key(key)

def keys(self):
return self.attrs.keys()

def values(self):
return self.attrs.values()

def items(self):
return self.attrs.items()

def getVRclasses(module):

v =1
for name in dir(module):

ref = getattr(module, name)

try:
if ref 1= VirtualResource and issubclass(ref, VirtualReso urce):
rv.append(ref)
except TypeError:
pass
rv.sort(key=(lambda ref: (inspect.getmro(ref)).__len_ _()), reverse=True)
return rv

B.2 River Virtual Machine [riverVM.py]

import sys, struct, os, time, operator

from copy import deepcopy

from threading import Thread, Lock, Condition
from select import select

from socket import *

import river.core.getmyip as getmyip

from river.core.packet import Packet, encode, decode
from river.core.oneq import OneQueue

from river.core.pool import ConnPool

from river.core.kbthread import KeyboardThread
from river.core.errors import *

from river.core.options import *

from river.core.debug import DBG

import profile

class InputThread(Thread):
def __init_ (self, vm):
Thread.__init__(self)
selfvm = vm

def runp(self):
globals()['profileme’] = self.runl
profile.runctx(‘profileme()’, globals(), locals())

def run(self):
while 1:
self.vm.netread()

class ARPEntry(object):
def __init_ (self, uuid, addr):
self.uuid = uuid
self.addr = addr
self.tstamp = time.time()

class RiverVM(object):
def __init_ (self, *kwargs):
DBG('vm', 'Initializing River VM...)

# ARP-style cache of uuid->addr
self.arpcache = {}

# list of VRs on this VM
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selfVRs = {}

# control VR
self.control = None

# figure out our IP
# note that KeyError is raised if iface is None, which
#  forces IP lookup via 'broadcast' method
try:
if kwargs.get('iface’) == None:
raise KeyError

from osdep import getifaddrs
iflist = getifaddrs.getifaddrs()

for iface,ip in iflist:
if iface == kwargs[iface’]:
self.myip = ip
break
else:
raise RiverError, ‘invalid interface %s' % kwargs[iface’

except ImportError:

raise RiverError, 'your system does not support interface s
except KeyError:

self.myip = getmyip.get_ip_bcast()

DBG('vm', 'l believe my IP is %s', self.myip)

# create a multicast socket
self.usock = socket(AF_INET, SOCK_DGRAM)
try:
self.usock.setsockopt(SOL_SOCKET, SO_REUSEPORT, 1)
except NamekError:
self.usock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

# bind to our port

self.usock.bind((", udp_port))

# join our multicast group on the specified interface
mreq = struct.pack('4s4s', inet_aton(mcast_addr), inet_
self.usock.setsockopt(IPPROTO_IP, IP_ADD_MEMBERSHIP,
# use the specified interface for outgoing mcast packets
self.usock.setsockopt(IPPROTO_IP, IP_MULTICAST_IF, in
# set TTL for mcast packets
self.usock.setsockopt(IPPROTO_IP, IP_MULTICAST_TTL, 3

# create a socket for IPC
self.ipcsock = socket(AF_INET, SOCK_DGRAM)

global ipc_addr
ip,port = ipc_addr
i = port
while i < (port + MAXVMS):
try:
self.ipcsock.bind((ip, 1))
break

election’

aton(self.myip))
mreq)

et_aton(self.myip))

2)

except error:
i+=1

else:

raise RiverError, 'Unable to bind port for IPC; too many VMs?

DBG('vm', ' IPC socket bound to port %d', i)
ipc_addr = (ip,i)

# create a TCP listening socket
self.Isock = socket(AF_INET, SOCK_STREAM)
self.Isock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

self.port = tcp_port
while self.port < (tcp_port + MAXVMS):

try:
self.Isock.bind((", self.port))
break

except error:
self.port += 1

else:

raise RiverError, 'Unable to bind port for TCP; too many VMs?

DBG('vm', ' TCP socket bound to port %d', self.port)
self.Isock.listen(4)

# connection pool

self.pool = ConnPool(MAXCONNCACHE)

self.pool.sethello(encode(type="__hello__",
srcaddr=(self.myip, self.port)))

# wrap mcast and ipc sockets inside ‘net connections'
self.pool[(mcast_addr, udp_port)] = self.usock
self.mcastnc = self.pool[(mcast_addr, udp_port)]
self.mcastnc.expire(None)

self.poolfipc_addr] = self.ipcsock
self.ipc = self.pool[ipc_addr]
self.ipc.expire(None)

self.spr,self.spw = 0s.pipe()
self.sendq = []

# create network input thread

self.nt = InputThread(self)
self.nt.setName('Network Input Thread’)
self.nt.start()

# create keyboard input thread (will be started by ControlVR
selfkt = None
daemon = kwargs.get('daemon’)
if (sys.platform != 'win32") and not daemon:
self.kt = KeyboardThread()
self.kt.setName('Keyboard Input Thread')

# pre-encode a 'tickle' message
self.tickle = encode(type="__ipc__', command='tickle')
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def netread(self):
rset = self.pool.values()
rset.append(self.Isock)

rset,wset,eset = select(rset, [], [])

if self.lsock in rset:
s,addr = self.Isock.accept()
if _debug_:
DBG('network', '[RVM:netread] new connection from %s', ad
self.pool[addr] = s
rset.remove(self.Isock)

if len(rset) == 0: return

for nc in rset:
try:
if _debug_:
DBG('network’, '[RVM:netread] reading %s', nc)
packets = nc.recv()

except ConnError:
if _debug_:
DBG('network’, '[RVM:netread] dropped %s', nc)
del self.pool[nc.addr]
continue

for p in packets:
if __debug__:
DBG('packet', 'recv %s', p)

if nc == self.poolipc_addr]:
self.ipccmd(p)
continue

if self.arpcheck(p):
continue

if self.hellocheck(p):
if _ debug_:
DBG('network’, '[RVM:netread] remap %s to %s',
nc.addr, p.srcaddr)
self.pool.remap(nc.addr, p.srcaddr)
continue

# add packet to the appropriate queue

try:
vr = self.VRs[p.dest]
vr.g.put(p)
if _ debug_:

DBG('network’, '[RVM:netread] for %s', p.dest)

# no destination specified
except AttributeError:
if self.control:

dr)

self.control.g.put(p)

# destination is not our VR
except KeyError:
pass

def register(self, uuid, vr):
DBG('vm', '[RVM:register] new VR %s', uuid)
self.VRs[uuid] = vr

def setcontrol(self, uuid):
if self.control is None:
DBG('vm', '[RVM:setcontrol] %s', uuid)
self.control = self.VRs[uuid]

def unregister(self, uuid):
DBG('vm', '[RVM:unregister] deleting VR %s', uuid)
del self.VRs[uuid]

def hasVR(self, uuid):
return self.VRs.has_key(uuid)

def VRcount(self, all=False):
if all:
return len(self.VRs)
X = reduce(operator.add, [int(not vr.sysvr) for vr in self.
return x

def setVMattr(self, key, value):
return self.control.setattr(key, value)

def arpcheck(self, p):
type = p.get(type', None)
if type ="' _arp_ "
return False

if p.command == 'request"
DBG(‘arp', '[RVM:arp] request %s', p.target)

# one of ours?
if self.hasVR(p.target):
self.mcast(type="__arp__', command="reply', src=p.tar
srcaddr=(self.myip, self.port))

elif p.command == 'reply":
DBG(‘arp', '[RVM:arp] reply %s -> %s', p.src, p.srcaddr)
self.arpcache[p.src] = ARPEntry(p.src, p.srcaddr)

return True

def arpdup(self, uuidl, uuid2):
self.arpcachefuuid?] = self.arpcache[uuidl]

def hellocheck(self, p):
type = p.get(type', None)

VRs.values()])

get,
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if type = '_hello_":
return False

return True

def ipccmd(self, p):
command = p.get(command’, None)

if command == 'quit":
DBG('vm', '[RVM:netread] exit')
sys.exit(0)

elif command == ‘tickle".
DBG('network', '[RVM:netread] tee hee, that tickles')

def send(self, **kwargs):
uuid = kwargs['dest]

# are we sending to a local VR?
# as an optimization, just add it to the right queue
if self.hasVR(uuid):

if __debug_:

DBG('network', '[RVM:send] local optimized')

p = Packet(deepcopy(kwargs))

vr = self.VRs[uuid]

vr.g.put(p)

return len(p)

addr = self.resolve(uuid)
if not addr:
raise RiverError, ‘Unable to resolve %s' % uuid

nc = self.pool[addr]

# if this is a new connection, tickle network thread
# so that it can be added to select() set
if nc.new:
if _debug_:
DBG('network', [RVM:send] tickle for %s', addr)
self.ipc.send(self.tickle)

if _ debug_:
DBG('packet', 'send %s', kwargs)
return nc.send(encode(**kwargs))

def resolve(self, uuid):
try:
entry = self.arpcache[uuid]
if time.time() < entry.tstamp + ARPTIMEOUT:
return entry.addr
except KeyError:
pass

if _ debug_:
DBG(‘arp', '[RVM:resolve] %s not found in cache’, uuid)

# block until resolved (with timeout?)

i=5

stime = time.time()

while not self.arpcache.has_key(uuid) and i:
DBG(‘arp', '[RVM:resolve] ARP request broadcast’)
self.mcast(type="__arp__', command="request’, target=
DBG(‘arp', '[RVM:resolve] waiting for reply’)

time.sleep(ARPSLEEP)
i=1

if not i
DBG(‘arp', '[RVM:resolve] timed out')
return None

if _ debug_:
DBG(‘arp', '[RVM:resolve] resolved to %s', self.arpcache

return self.arpcache[uuid].addr

def mcast(self, **kwargs):
DBG('packet’, 'mcast %s', kwargs)
self. mcastnc.send(encode(**kwargs))

def killVR(self):
p = Packet()
p.type = ' control_'
p.command = 'reset'
p.src = 'River VM'

for vr in self.VRs.values():
if vr is not self.control:

vr.g.put(p)

def close(self):
# terminate network input thread
X = encode(type="__ipc__', command="quit’)
self.ipc.send(x)

self.nt.join()

# terminate keyboard thread

if self.kt is not None:
self.kt.close()
self.kt.join()

self.Isock.close()

for s in self.pool.values():

s.close()
p = Packet()
p.type = ' control_'

p.command = ‘quit’
p.src = 'River VM'
for vr in self.VRs.values():

uuid)

[uuid].addr)
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vr.g.put(p)

DBG('vm', '[RVM:close] River ran dry')

B.3 Control VR [control.py]

import os, sys, platform, getpass, new, inspect
from river.core.uuid import uuidgen

from river.core.vr import *

from river.core.console import *

from river.core.options import *

from river.core.errors import *

from river.core.debug import DBG

# recipe 18.2 from the Python Cookbook
def makemodule(name, source):
module = new.module(name)
sys.modules[name] = module
exec source in module.__dict__
return module

class ControlVR (VirtualResource):
def __init_ (self, **kwargs):
VirtualResource.__init__(self, **kwargs)
self.args[0] = 'ControlVR'

self._vmstate = ‘available’'
self.allocations = {}

self.restrict = kwargs.get('restrict, True)

try:
self.console = kwargs['console’]

# add an RAI server for the console
from river.extensions.rai import RAIServer
self.rai = RAIServer(self.console, self)
except KeyError:
self.rai = None
except ImportError, e:
print 'WARNING: RAI extensions not available:', e
print *  Console will NOT be remotely available'
self.rai = None

self.console_out = Console_Out(self, '-')
self.console_in = Console_In(None)

if self.vm.kt is not None:
self.vm.kt.configure(self, self.console_in.saved_std
self.vm.kt.start()

self.user = getpass.getuser()

# we are a system VR
self.sysvr = True

# get python version (determined in base launcher)
self.python_version = kwargs.get(‘python_version', ‘Un

# fill in attributes that we'll send back on discover

self.attrs = {
‘version' . current_version,
‘cpu’ 01,
‘arch’ . platform.machine(),
‘mem’ 11
‘os' . platform.system(),
‘pyver' . platform.python_version(),
‘pyver' . self.python_version,
‘host' . platform.node(),
‘cvr' . self.uuid,
'status' . self.status,
‘user' . self.user,
'label . self.label,
‘userVRs' . self.vm.VRcount(),
‘allVRs' . self.vm.VRcount(True),
‘caps' :'con !
}

# keep track of running VRs

selfVRs = {}

# load control extensions
DBG(‘control', [CON:init] loading extensions')
self.extensions = []
globals()['control_extension] = self.register_extens
globals()['send] = self.send
rvmmod = __import__(‘river.core.riverVM’)
extdir,_ = os.path.split(rvmmod.__file_ )
extdir += '/extensions/control'
try:
for f in os.listdir(extdir):
if not f.endswith('.py’): continue
execfile('%s/%s" % (extdir, f), globals())
DBG(‘control', '[CON:init] loaded extension %s', f)
except OSError, e:
pass

def register_extension(self, types, commands, func):
self.extensions.append((types,commands,func))

def attributes(self):
self.attrs['status’] = self.status
self.attrs['userVRs'] = self.vm.VRcount()
self.attrs['allVRs'] = self.vym.VRcount(True)
return self.attrs

def setattr(self, key, value):

known')

ion
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self.attrs[key] = value

if key not in self.attrs['caps’:
self.attrs['caps] += '%s ' % key

def setstatus(self, status):
self._status = status

def getstatus(self):
count = self.vym.VRcount()
if count >= MAXUSERVRS:
self._status = 'busy’'
else:
self._status = ‘available'
return self._status

def discmatch(self, p):
myattrs = self.attributes()
pattrs = p._m_.copy()

del pattrs['type']
del pattrscommand
del pattrs['src]

for k in pattrs:
# special case: match any user in unrestricted mode
if k == 'user' and not self.restrict:
continue

try:
x = pattrs[k]
y = myattrs[k]
except KeyError:
DBG(‘control', [CON:match] attribute not found: %s', k)
return False

if x!=yand x ="
return False

return True

def discover(self, p):
# if request is from ourselves, ignore it
if self.vym.hasVR(p.src):
DBG(‘control', [CON:discover] ignoring from self')
return

if not self.discmatch(p):
DBG(‘control', [CON:discover] matching failed')
return

DBG(‘control', [CON:discover] replying’)
try:

self.send(type="__control__', command="discover',
attributes=self.attributes(), dest=p.src)

except ConnError:

print p
print 'ERROR: Unable to reply to', p.src
print ' Perhaps blocked by a firewall?'

def allocate(self, p):
# for allocate to succeed the user must match or
# we must be running in unrestricted mode
if p.get(user) == self.user or not self.restrict:
newuuid = uuidgen()
self.allocations[p.src] = newuuid
result = 'success'
else:
newuuid = None
result = 'ERROR: not available'

DBG(‘control', [CON:allocate] %s', result)
self.send(type='__control__'
newuuid=newuuid, dest=p.src)

def deallocate(self, p):
self.allocations.pop(p.src, None)

def deploy(self, p):
# make sure a VR has already been allocated
allocated = False

try:
newuuid = self.allocations[p.src]
del self.allocations[p.src]
allocated = True

module = self.rimport(p)
classes = getVRclasses(module)
klass = classes[0]

except (ImportError, IndexError, KeyError, RiverError),
# possible errors: not allocated, no such module,
# no VR subclasses in module
# or remote import failed
result = 'ERROR: %s' % e

if not allocated:
result = 'ERROR: not allocated'

DBG('control', TCON:deploy] %s', result)
self.send(type="__control__', command="deploy’, resul
dest=p.src)

return

if len(classes) > 1:
DBG('general', 'WARNING: extra VR subclasses in %s', p.mod
DBG('general', classes)
DBG('general’, ' using %s', str(klass))

, command="allocate’, res ult=result,

t=result,

ule)
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DBG(‘control’, [CON:deploy] creating new VR %s', newuuid )

obj = klass(vm=self.ym, name=p.module, uuid=newuuid, fun c=p.func,
args=p.args, parent=p.src)

self.console_in.setmvr(obj)

obj.lde = p.get(lde’)
obj.start()

self.send(type="__control__', command="deploy', resul t="success',
dest=p.src)

self.VRs[p.module] = obj

def rimport(self, p):
module = None

try:
DBG(‘control', TCON:rimport] trying included source’)
if p.source != None:
return makemodule(p.module, p.source)

from river.extensions.remote import RemoteVR

DBG(‘control', [CON:rimport] trying LDE for %s', p.modul e)
if p.get(lde’) == None:
raise RAIError, ‘No directory export'

lde = RemoteVR(p.lde, self)
f = lde.open(p.module + ‘.py')
code = fread()

f.close()

return makemodule(p.module, code)

except (RAIError, ImportError), e:
DBG(‘control', [CON:rimport] %s', €)
DBG(‘control', [CON:rimport] fallback to local’)

try:
return __import__(p.module)

except ImportError:
DBG(‘control', [CON:rimport] local import failed')

raise RiverError, ‘unable to import module %s' % p.module

def vr_exit(self, p):
# exit a VR on this VM
self.vm.unregister(p.src)
self.cleanup()

def cleanup(self):
thd = set()

for name in self.VRs.keys():
vr = self.VRs[name]

DBG('control', [CON:cleanup] %s exited, joining', name)
del self.VRs[name]
vr.join()

klasses = inspect.getmro(vr.__class_ )
for k in klasses:
if k.__name__ is 'VirtualResource"
break
thd.add(k.__module_)

for mod in thd:
DBG(‘control', [CON:cleanup] deleting module %s', mod)
try:
del sys.modules[mod]
except KeyError:
pass

def process_console(self, p):

if p.subcommand == ‘setout’;
self.console_out.setstream(p.src)

if p.subcommand == ‘unsetout’:
self.console_out.unsetstream(p.src)

if p.subcommand == ‘write":
self.console_out.write_out(p.data)

if p.subcommand == 'read"
self.console_in.read_in(p.data, self)

def extmatch(self, p):
for (types, commands, func) in self.extensions:
if p.type in types and p.command in commands:
func(p)
return True

def main(self):
DBG(‘control', ‘Control VR starting’)
DBG('control', * my UUID: %s', self.uuid)
DBG(‘control', * args: %s', self.args)
DBG('control', ' attrs:  %s', self.attributes())

while 1:
p = self.recv()

type = p.get(type’)

if type =="'_rai_ ' and self.rai is not None:
self.rai.dispatch(p)
continue

elif type !'= ' control__"
DBG(‘control', [CON:main] unknown type %s', type)
continue

DBG(‘control', [CON:main] command: %s', p.command)
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if p.command == ‘vr_exit"
self.vr_exit(p)
elif p.command == 'discover"
self.discover(p)
elif p.command == ‘allocate";
self.allocate(p)
elif p.command == ‘deallocate:
self.deallocate(p)
elif p.command == 'deploy"
self.deploy(p)
elif p.command == ‘quit"
DBG(‘control', [CON:main] terminated’)
break
elif p.command == 'reset"
user = p.get(‘'user')
if user == self.user:
self.vm.killVR()
else:
DBG('control', [CON:main] reset from wrong user: %s', use
elif p.command == 'console":
self.process_console(p)
elif self.extmatch(p):
pass
else:
DBG(‘control', [CON:main] unknown command %s', p.comman

status = property(getstatus, setstatus)

B.4 Super Flexible Packet [packet.py]

import operator, struct, sys, cPickle as pickle
from river.core.options import current_version
from river.core.debug import DBG

from river.core.errors import SFMError

hdrfmt = '1%dsi' % len(current_version)

class Packet(object):
def __init_ (self, m={}, size=0):
self__dict_['m_7=m
self.__dict_['_size '] = size

self.__dict_ [items’] = m.items
self.__dict_ ['iteritems’] = m.iteritems
self.__dict_ [keys'] = m.keys
self.__dict_ [iterkeys] = m.iterkeys
self.__dict_ ['values] = m.values
self.__dict_ [itervalues’] = m.itervalues
self.__dict_ ['has_key] = m.has_key
self,__dict_ ['get] = m.get

def _ getattr__(self, key):
try:

return self._m_[key]
except KeyError:

raise AttributeError, 'Packet has no attribute: %s' % key

def _ setattr_ (self, key, value):
return self._m_.__ setitem__(key, value)

def __getitem__(self, key):
return self._m_.__getitem__(key)

def _ setitem__(self, key, value):
return self._m_.__ setitem__(key, value)

def __delitem__(self, key):
return self._m_.__ delitem__(key)

def __str_ (self):

return 'Packet: ' + str(self._m_)

def __len_ (self):
return self._size_

def encode(**kwargs):
payload = pickle.dumps(kwargs, pickle.HIGHEST_PROTOCOL
hdr = struct.pack(hdrfmt, current_version, len(payload)
return hdr+payload

def decode(data):
left = len(data)
hdrlen = struct.calcsize(hdrfmt)

# incomplete header
if left < hdrlen:
return None,data

version,size = struct.unpack(hdrfmt, data[:hdrlen])

if version != current_version:
DBG('packet’, '[decode] discarding wrong version: %s',
version)
raise SFMError, 'Invalid input'

# incomplete packet
if left < (hdrlen + size):
return None,data

off = hdrlen
m = pickle.loads(data[off:off+size])
p = Packet(m, size=hdrlen+size)
off += size

return p, data[off;]
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B.5 SFM Queue [oneq.py]

import time, types

from threading import Condition

from river.core.packet import Packet, encode, decode
from river.core.options import *

from river.core.errors import *

from river.core.debug import DBG

class OneQueue(object):
def __init_ (self):
self.q = ]
self.callbacks = {}
self.cv = Condition()
self.waits = 0
self.calls = 0

def match(self, packet, attrs):
if packet.get('src’) == 'River VM’
return True

for a in attrs:
try:
pv = packet[a]
av = attrs[a]
except KeyError:
return False

if isinstance(av, types.FunctionType) or \
isinstance(av, types.MethodType):
if not av(pv):
return False
elif pv = av:
return False
return True

def checkchb(self, packet):
for attrs in self.callbacks:
func = self.callbacks[attrs]
if self.match(packet, attrs):
self.callstack.append((packet, func))
return True
return False

def regch(self, **kwargs):
try:
func = kwargs['callback]
del kwargs['callback’]
self.callbacks[kwargs] = func
except KeyError:
pass

def unregcb(self, **kwargs):
try:
func = kwargs[‘callback]
del kwargs['callback’]

del self.callbacks[kwargs]
except KeyError:
pass

def put(self, packet):
self.cv.acquire()
self.q.append(packet)
self.cv.notify()
self.cv.release()

DBG('queue’, '%s', packet)

if _ debug_:
DBG(‘'queue’, TQ:put] new total: %d packets', len(self.q)

def get(self, **kwargs):
self.cv.acquire()

v = None
while rv is None:
self.callstack = [
for p in self.q:
self.checkcb(p)

for packet, func in self.callstack:
self.q.remove(packet)
func(packet)

for p in self.q:
if self.match(p, kwargs):
v=p
break

# if we got nothing, block until something comes in
if rv is None:
self.cv.wait()

self.q.remove(rv)
self.cv.release()

return rv

def getnoch(self, **kwargs):
self.calls += 1
self.cv.acquire()

v = None
while rv is None:
for p in self.q:
if self.match(p, kwargs):
v=p
break

if rv is None:
self.waits += 1
self.cv.wait()
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self.q.remove(rv)
self.cv.release()

return rv

def peek(self, **kwargs):
for p in self.q:
if self.match(p, kwargs):
return True
return False

def get_nb(self, **kwargs):
self.cv.acquire()

rv = None
for p in self.q:
if self.match(p, kwargs):
v=p
self.q.remove(p)
break

self.cv.release()

if rv:
return rv

raise QueueError, 'would block'

B.6 Network Connection [nc.py]

import sys, time

from
from
from
from
from
from

socket import *

socket import _socketobject

river.core.packet import Packet, encode, decode
river.core.options import *

river.core.errors import *

river.core.debug import DBG

class NetConn(object):

def __init_ (self, addr):
self.tstamp = time.time()
self.buffer = "
self.scount = 0
self.rcount = 0

if isinstance(addr, _socketobject):

self.sock = addr

self.fileno = self.sock.fileno

# ghetto way of determining protocol

try:
self.addr = self.sock.getpeername()
self.prot = 'TCP'

except error:

# caller (pool) will fill in self.addr
self.addr = None

self.prot = 'UDP'

self.send = self.usend

self.recv = self.urecv

return

s = socket(AF_INET, SOCK_STREAM)

t = s.gettimeout()

s.settimeout(1.0)

n=>5

connected = False

DBG('network’, '[NC:init] connect to %s', addr)

while n:
DBG('network’, '[NC:init] attempt %d', n)
n-=1
try:

s.connect(addr)
connected = True
break
except error, strerror:
if isinstance(strerror, tuple):
errno,strerror = strerror

DBG('network', '[NC:initf ERROR: %s %s', addr, strerror)

if not connected:
raise ConnError, 'Unable to connect'

self.prot = 'TCP'
s.settimeout(t)

self.addr = s.getpeername()
self.sock = s

self.fileno = s.fileno

def getpeername(self):
return self.addr

def recv(self):
try:
data = self.sock.recv(NCBUFSIZE)
except error, (errno, strerror):
raise ConnError, strerror

if not data:
raise ConnError, 'Dropped connection'

self.tstamp = time.time()
return self.process(data)

def urecv(self):
data,addr = self.sock.recvfrom(NCBUFSIZE)

return self.process(data)
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def process(self, data):
packets = ]
rv = len(data)
self.rcount += rv

if _ debug_:
DBG('network', '[NC:process] %d bytes from %s', rv, self.a

self.buffer += data

try:
while self.buffer:
p,self.buffer = decode(self.buffer)
if p is None: break
packets.append(p)
except SFMError:
DBG('network', '[NC:recv] SFM decode error; discarded’)

return packets

def send(self, data):
self.tstamp = time.time()

if _ debug_:
DBG('network', '[NC:send] %d bytes to %s', len(data), self
n = self.sock.send(data)
self.scount += n
return n

def usend(self, data):
if _ debug_:
DBG('network', '[NC:send] %d bytes to %s', len(data), self
n = self.sock.sendto(data, self.addr)
self.scount += n
return n

def close(self):
DBG('network’, '[NC:close] %s', self.addr)

DBG('network’, * %d bytes sent, %d bytes received',
self.scount, self.rcount)
self.sock.close()

def expire(self, when):
if when is None:
self.tstamp = sys.maxint
else:
self.tstamp = time.time() + when

def _ str_ (self):
return '%s connection to %s' % (self.prot, self.addr)

ddr)

.addr)

.addr)

B.7 Connection Pool [pool.py]

from threading import Lock

from river.core.nc import NetConn
from river.core.errors import *
from river.core.debug import DBG

# maintain a pool of [open] connections. whenever the pool is
# expunge least recently used

class ConnPool(object):
def __init_ (self, maxsize):
DBG('network’, '[POOL:init] max: %d', maxsize)
self.max = maxsize

self.pool = {}
self.lock = Lock()

self.hello = None

def _ getitem__(self, addr):

try:
nc = self.pool[addr]
# mark this as an existing connection
nc.new = False

except KeyError:
self.check()
nc = NetConn(addr)
if self.hello: nc.send(self.hello)
self.lock.acquire()
self.pool[addr] = nc
self.lock.release()
# mark this as a new connection
nc.new = True

return nc

def _ setitem__(self, addr, sock):

self.check()
self.lock.acquire()
nc = NetConn(sock)
if nc.addr is None:

nc.addr = addr
self.pool[addr] = nc
self.lock.release()

def _ delitem__(self, addr):
DBG('network’, '[POOL:del] %s', addr)

try:
nc = self.pool[addr]
nc.close()

del self.pool[addr]

except KeyError:

full,
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raise RiverError, ‘Connection cache inconsistency'

def has_key(self, key):
return self.pool.has_key(key)

def values(self):
return self.pool.values()

def close(self, addr):
nc = self.pool[addr]
nc.close()

del self.pool[addr]

def check(self):
if len(self.pool) >= self.max:
DBG('network', '[POOL:check] full, expunging LRU')
self.expunge()

def expunge(self):
self.lock.acquire()
x = self.pool.items()
x.sort(sortfun)

addr,nc = x[0]

DBG('network’, '[POOL:expunge] expunging %s', addr)
nc.close()

del self.pool[addr]

self.lock.release()

def remap(self, old, new):
self.lock.acquire()
nc = self.poolfold]
del self.pool[old]
nc.addr = new
self.pool[new] = nc
self.lock.release()

def sethello(self, packet):
self.hello = packet

def sortfun(tupl, tup2):
addrl,ncl = tupl
addr2,nc2 = tup2

return int(nc2.tstamp - ncl.tstamp)
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Appendix C

River Extensions Source Code

This appendix presents the source code to the River ExtesisivAl
and Trickle.

C.1 RAI Client Code [remote.py]

import inspect, types
from river.core.errors import *
from river.core.debug import DBG

def curry(func, fname, *args0, **kwargs0):
def callit(*args, **kwargs):
kwargs.update(kwargs0)
return func(fname, *(argsO+args), **kwargs)
return callit

class RemoteObject(object):
def __init_ (self, name, id, server, parent, type = ‘object ):
self.name = name
self.id = id
self.server = server
self.type = type

self.orphan = True
self.parent = None
self.send = None
self.recv = None

self.bind(parent)

def bind(self, parent):
DBG('rai', '[Remote:bind] %s to %s', self, parent)

def

def

def

def

def

def

def

self.parent = parent
self.send = parent.send
self.recv = parent.recv
self.orphan = False

__getnewargs__(self):
return (self.name, self.id, self.server, None)

__Qetstate__(self):

DBG('rai', '[Remote:getstate] making %s an orphan’, self)
d = self.__dict__.copy()

d['orphan’] = True

d['parent] = None

d['send] = None

d['recv'] = None

return d

__setstate__(self, d):
self.__dict__.update(d)
DBG('rai', '[Remote:setstate] orphan object %s', self)

__del_(self):

# orphans, functions, fork handles should not be deleted
if self.orphan or self.id is None: return

if self.type == ‘callable”: return

if isinstance(self, ForkHandle): return

DBG('rai', '[Remote:del] deleting remote object %s', self
self.shalf(command="delete")

_str__(selfy:
return '<%s (%s) on %s>' % (self.name, self.id, self.parent

__getattr__(self, name):
DBG('rai', '[Remote:getattr] lookup %s in %s', name, self.

if self.orphan:
DBG('rai', '[Remote:getattr] orphan object %s', self)

# try to find a parent VR for this object

frame = inspect.currentframe()

# it is possible that the caller is one of our member

# functions, so we may need to look deeper

while frame.f_globals['__name__'] == 'river.extensions
frame = frame.f_back

parent = frame.f_locals['self]

DBG('rai’, '[Remote:getattr] new RemoteVR, parent %s', pa
r = RemoteVR(self.server, parent)
self.bind(r)

return self.rai(command='getattr', name=name)

_call__(self, *args, **kwargs):

DBG('rai', '[Remote:__call_] calling %s %s in %s', self.n

.name)

name)

.remote";

rent)

ame,
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str(args), self.id)
return self.rai(lcommand="call', name=self.name, args=a

def fork(self, fname, *args, **kwargs):
if not isinstance(fname, str):
fname = fname.__name__

DBG('rai', '[Remote:fork] forking %s %s in %s', fname, str(
self.name)

self.shalf(command='call', name=fname, args=args, kwar
return ForkHandle(fname, self.id, self.server, self)

# this generic function does all the real work
def rai(self, **kwargs):

self.shalf(**kwargs)

return self.rhalf(command=kwargs['command?)

def shalf(self, **kwargs):
kwargs[type] = '_rai_'
kwargs['dest] = self.server
kwargs['id] = self.id

self.send(**kwargs)

def rhalf(self, **kwargs):
kwargs[type] = '_rai_
kwargs['src’] = self.server

p = self.recv(**kwargs)
return self.processrv(p)

def processrv(self, p):
if p.result == ‘object":
DBG('rai', '[Remote:processrv] %s is an object, p.name)
return RemoteObject(p.name, p.id, p.src, self.getparent

elif p.result == ‘function’:
DBG('rai', '[Remote:processrv] %s is a function', p.name)
return RemoteObject(p.name, p.id, p.src, self.getparent
type = 'callable’)

elif p.result == 'success"
return p.rv

elif p.result == 'Stoplteration":
raise Stoplteration

raise RAIError, 'RAI failed: %s' % p.result

def getparent(self):
if isinstance(self, RemoteVR):
return self
else:

rgs, kwargs=kwargs)

args),

gs=kwargs)

return self.parent

class RemoteVR(RemoteObject):
def __init_ (self, server, parent):
RemoteObject.__init__ (self, 'RemoteVR', None, server, p

def __str_ (self):
return '<RemoteVR %s>' % self.server

def inject(self, obj):
frame = inspect.currentframe().f_back
name = None

# travel up the call stack in case we were called by the
# global inject() function
while frame.f_locals.get('self) is self.parent:

frame = frame.f_back

# find the appropriate object to inject
for k in frame.f_locals:
if frame.f_locals[k] is obyj:
name = k
break

DBG('rai', '[RemoveVR:inject] injecting %s %s', name, typ

# function

if inspect.isfunction(obj):
injtype = ‘function’
src = inspect.getsource(obj)
filename = inspect.getsourcefile(obj)

# class
elif inspect.isclass(obj):
injtype = ‘class'
# trickle hack: look inside parent to determine the
# correct source file, since inspect is stupid
try:
DBG(rai', '[RemoteVR:inject] trying %s', self.parent.g
filename = self.parent.getName()
src = get_class_source(name, filename)
except:
raise RAIError, 'Unable to find code to inject'
filename = inspect.getsourcefile(obj)

# data
else:
injtype = ‘data’
src = obj
filename = '<data>'

DBG('rai', '[RemoteVR:inject] %s from %s', name, filename

self.railcommand='inject’, name=name, source=src, injt

arent)

e(obj))

)

ype=injtype)

etName())
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class ForkHandle(RemoteObject):
def _ str_ (self):
return '<ForkHandle to %s in %s>' % (self.name, self.parent

def join(self):
return self.rhalf(command='call’)

def get_class_source(classname, filename):
f = open(filename)

buf = "

ind0 = None
copying = False
save_next = True

for |'in f:
ind = len(l) - len(l.Istrip())

if save_next:
ind0 = ind
save_next = False

if ind0 is not None and ind < indO:
break

if Ifind('class’) >= 0 and l.find(classname) > 0:
copying = True
save_next = True

if copying:
buf += 1

f.close()

if not buf:
raise RiverError, 'Parsing failed'

return buf

C.2 RAI Server Code [rai.py]

import new, getopt, random, sys, traceback
from river.core.vr import VirtualResource
from river.extensions.remote import *

from river.core.errors import *

from river.core.debug import DBG

def ERR_INVALID_OBJ(id): return 'Invalid object id %s' % st r(id)

def isobject(x):
return not (isinstance(x, int) or isinstance(x, float) or \
isinstance(x, long) or isinstance(x, str) or \
isinstance(x, list) or isinstance(x, dict) or \

isinstance(x, tuple) or x is None)

class NSWrapper(object):
def __init_ (self, ns):
self.ns = ns

def _ getattr_ (self, name):
if self.ns.has_key(name):
return self.ns[name]
else:
raise AttributeError, "No such attribute '%s" % name

class RAlServer (object):
def __init_ (self, mainobj, parent, restrict=True):
self.restrict = restrict

self.ns = globals().copy()
self.ns.update(self.ns['__builtins__)
del self.ns['__builtins__1]

if mainobj is None:

self.mainobj = NSWrapper(self.ns)
else:

self.mainobj = mainobj

self.objcache = { None : self.mainobj }

self.puuid = parent.parent
self.send = parent.send
self.recv = parent.recv

def genID(self):
i = None
while self.objcache.has_key(i):
i = random.randint(0,9999)
return i

def hideobject(self, obj):
id = self.genID()
self.objcachelid] = obj

DBG('rai', '[RALhide] caching object, id %d', id)
DBG('ral', str(obj))

return id

def unwrap_one(self, x):
if isinstance(x, RemoteObject):

if x.type == ‘callable":
DBG('rai', '[RAl:unwrap] func %s in %s', x.name, x.id)
return getattr(self.objcache[x.id], x.name)

else:
DBG('rai', '[RAl:unwrap] obj %d', x.id)
return self.objcache[x.id]

return X
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def unwrap(self, x):
if len(x) ==
return x

# unwrap any references to remote objects (our local objects
if isinstance(x, tuple) or isinstance(x, list):
x = tuple([self.unwrap_one(i) for i in x])
elif isinstance(x, dict):
for i in x:
X[i] = self.unwrap_one(x[i])

return X

def reply(self, **kwargs):
kwargs[type] = '_rai_

rv = kwargs['rv]
name = kwargs['name’]
result = kwargs['result’]

if result != 'success':
DBG('rai', '[RALreply] ERROR: %s', result)

if callable(rv):
kwargs['rv] = None
kwargs[result] = ‘function’
DBG(rai', '[RALreply] %s is a function', name)

elif isobject(rv):
DBG('rai', 'name change from %s to %s', kwargs['name]],
rv.__class__.__name_ )
kwargs['name’] = rv.__class_ . _name__
kwargs[id] = self.hideobject(rv)
kwargs['rv] = None
kwargs[result] = ‘object’

self.send(**kwargs)

def megafunc(self, packet):
rv = None
id = packet.id
name = packet.name
cmd = packet.command
result = 'success'

DBG('rai', '[RAL:%S] %s in object %s', cmd, name, id)

args = self.unwrap(packet.get(args', []))
kwargs = self.unwrap(packet.get(kwargs', {}))

try:
obj = self.objcachelid]

if cmd == 'getattr":
rv = getattr(obj, name)

elif cmd == ‘call:
DBG(rai', ' args: %s kwargs: %s', args, kwargs)
func = getattr(obj, name)
rv = func(*args, **kwargs)

# object does not exist
except KeyError:
result = ERR_INVALID_OBJ(id)
# no such attribute
except (AttributeError, TypeError), e:
result = str(e)
except Stoplteration:
result = 'Stoplteration’
# any other error
except Exception, e:
result = str(e)

self.reply(command=cmd, id=id, name=name, rv=rv, result
dest=packet.src)

def inject(self, packet):
result = 'success'

if self.restrict:
result = 'Permission denied'

else:
DBG('rai', '[RALinject] %s (%s), packet.name, packet.i

if packet.injtype == 'data"
self.ns[packet.name] = packet.source
else:
exec packet.source in self.ns

self.send(type="__rai__', command='inject’, id=None, n
result=result, dest=packet.src)

def delete(self, packet):
id = packet.id

# do not delete the main object
if id is None:
return

try:
del self.objcachelid]
DBG('rai", '[RAl:del] deleted object %d (%d left), id,
len(self.objcache))
except KeyError:
DBG('rai', '[RAl:del] %s', ERR_INVALID_OBJ(id))

def dispatch(self, p):
if p.type == '__control__" and p.command == 'quit":
if p.src == 'River VM' or p.src == self.puuid:
raise RiverExit, 'termination requested'
else:

=result,

nitype)

ame=packet.name,
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DBG(rai', '[RAl:dispatch] unauthorized termination req

if ptype I="'_rai_ "
DBG(rai', '[RAldispatch] not an RAI packet')
return

if p.command == ‘call or p.command == 'getattr"
self.megafunc(p)

elif p.command == ‘inject"
self.inject(p)

elif p.command == ‘delete";
self.delete(p)

else:
DBG('rai', '[RAldispatch] unknown command %s', p.comman

class RAIServerVR (VirtualResource):
def __init_ (self, **kwargs):
VirtualResource.__init__(self, **kwargs)

try:
self.module = kwargs['module’]
except KeyError:

self.module = None

def usage(self):
print 'usage: river %s [--unrestricted] [module] % self.a

def main(self):
restrict = True

try:
opts,args = getopt.getopt(self.args[1:], 'U’,
['help’, ‘unrestricted])
except getopt.GetoptError, e:
print 'ERROR!, e
return -1

for o,a in opts:

if o == "h' or 0 == "--help"
self.usage()
return -1

elif o == "-u' or 0 == "--unrestricted"

restrict = False

if restrict and len(args) ==
self.usage()
return -1

if args and self.module:
if args[0].endswith(.py"):
filename = args[O][:-3]
module = self.module

rgs[0]

uest)

C.3

elif args:
filename = args[0]
if args[0].endswith(".py’):
filename = args[O][:-3]

try:
module = __import__(filename)

except ImportError, e:
print 'ERROR: RAI unable to import %s: %s' % (args[0], €)
return -1

print 'RAI serving module’, args[0]

elif not restrict:
module = None
filename = '<unrestricted>'

else:
print 'ERROR: no module specified in restricted mode'
return -1

if not restrict:
DBG('rai’, 'WARNING: running in unrestricted mode!')

DBG('rai', '[RAl:main] %s serving %s', self.uuid, filenam
rai = RAIServer(module, self, restrict)
self.setVMattr('RAI_module', filename)
self.setVMattr('RAI_server', self.uuid)

while 1:
p = self.recv()
try:
rai.dispatch(p)
except RiverError, e:
traceback.print_exc()
except RiverExit:
break

Trickle [trickle.py]

import sys, os, traceback, getopt, cmd, readline

from
from
from
from
from
from
from
from

river.core.riverVM import RiverVM

river.core.control import ControlVR

river.core.vr import VirtualResource

river.core.launcher import RiverLauncher

river.extensions.remote import RemoteObject, Remot evR
river.extensions.rai import RAIServerVR

river.core.errors import *

river.core.options import *

class TrickleError (RiverError):

pass



144"

return vrlist.fork(flist, *args)
class Trickle (VirtualResource):

def __init_ (self, **kwargs): if isinstance(flist, list):
VirtualResource.__init__(self, **kwargs) flistp = True
if len(vrlist) = len(flist):
g = globals() raise TrickleError, 'Invalid arguments'
g['connect] = self.connect
gllinject] = self.inject else:
g[fork] = self.fork f = flist
gljoin] = selfjoin
g[joinany] = self.joinany if len(args) ==
g['forkjoin’] = self.forkjoin if isinstance(args[0], list):
g['forkgen_old] = self.forkgen_old arglistp = True
g['forkwork_old'] = self.forkwork_old arglist = args[0]
g['forkgen] = self.forkgen if len(vrlist) != len(arglist):
g['forkwork] = self.forkwork raise TrickleError, ‘'Invalid arguments'
def vr_init(self): for i, vr in enumerate(vrlist):
discovered = self.discover() if arglistp:
allocated = self.allocate(discovered) args = arglist[i]
deployed = self.deploy(allocated, module='rai', if not isinstance(args, tuple):
args=['rai.py’, '--unrestricted]) args = [args]
if flistp:
self.vrlist = [vm['uuid] for vm in deployed)] f = flist[i]
return True rv.append(vr.fork(f, *args))
def connect(self, np = 0): return rv
vrcount = len(self.vrlist)
if vrcount < np: def join(self, hlist):
raise TrickleError, ‘Not enough VMs found' if not isinstance(hlist, list):
return hlist.join()
if np == 0:
np = vrcount if len(hlist) ==

raise TrickleError, ‘join on an empty list'
rv = [RemoteVR(uuid, self) for uuid in self.vrlist[:np]]
rvlist = [h.join() for h in hlist]

return rv hlist = []
return rvlist
def inject(self, vrs, *args):
if type(vrs) != list: def joinany(self, hlist):
vrs = [vrs] if not isinstance(hlist, list):
for vr in vrs: return hlist.join()
for code in args:
vr.inject(code) if len(hlist) == 0:

raise TrickleError, ‘join on an empty list
def fork_1(self, vr, fname, *args):

return vr.fork(fname, *args) m={
for h in hlist:
def fork(self, vrlist, flist, *args): mlh.server] = h
v o=
flistp = False p = self.recv(type="__rai_', command="call’)
arglistp = False
h = m[p.src]
# Handle simple case: single vr and single func hlist.remove(h)

if not isinstance(vrlist, list) and not isinstance(flist, list):
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return h, h.processrv(p)

def forkjoin(self, vrlist, flist, *args):
hlist = fork(vrlist, flist, *args)
return join(hlist)

def forkgen_old(self, vrlist, fname, work):
hlist = []

while True:
while len(work) > 0 and len(vrlist) > 0:
w = work.pop()
v = vrlist.pop()
print w
hlist.append(fork(v, fname, w))

if len(hlist) > 0:
h, rv = joinany(hlist)
vrlist.append(h.vr)
yield(rv)

else:
break

# Support sending chunks of work to each VM

# Allow work to be a generator

def forkgen(self, vrlist, fname, work, chunksize=1):
hlist = ]

# Initialize generator
if not isinstance(work, list):
workgen = work()

while True:
while len(vrlist) > 0:
if isinstance(work, list):
if len(work) > 0:
if len(work) >= chunksize:
w = work[0:chunksize]
work = work[chunksize:]
else:
w = work
work = ]
v = vrlist.pop()
hlist.append(v.fork(fname, w))
else:
break
else:
try:
w = workgen()
except Stoplteration:
break
v = wvrlist.pop()
hlist.append(fork(v, fname, *w))

if len(hlist) > 0:
h, rv = joinany(hlist)

vrlist.append(h.getparent())
yield(rv)

else:
break

def forkwork_old(self, vrlist, fname, work):
results = ]

for rv in forkgen_old(vrlist, fname, work):
results.append(rv)

return results

def forkwork(self, vrlist, fname, work, chunksize=1):
results = ]

for rv in forkgen(vrlist, fname, work, chunksize=chunksiz
results.append(rv)

return results

def main(self):
sys.argv = self.args[1:]

if len(self.args) == 1:
print 'usage: %s <module>' % self.args[0]
return -1

try:
execfile(self.args[1], globals())
except SystemExit:
pass
except Exception, e:
traceback.print_exc()

# tell all the RAI servers to exit
for vr in self.vrlist:
self.send(dest=vr, type="__control__', command="quit'

def interpreter(self, interpreter):
interpreter.cmdloop()

class TrickleLauncher (RiverLauncher):
def __init_ (self):
RiverLauncher.__init__(self)

self.dbgopts = [rai]
self.interactive = False

self.register_cmdline_options(", [interactive], se

def usage(self):
RiverLauncher.usage(self)

print ‘Trickle options:'
print ' --interactive :run in interactive mode'

If.parse_cmdline_ch)
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print
print 'Either a module to run or --interactive must be specif

def parse_cmdline_ch(self, o, a):
if 0o == '-interactive": self.interactive = True

def launch(self):
if not self.args and not self.interactive:
self.usage()
return False

self.startRVM()

self.args.insert(0, 'trickle.py")
args = [|

if self.interactive:
filename = ‘<interpreter>'
vr = Trickle(vm=self.rvm, name=filename, args=self.args
func="interpreter')
v = vr.vr_init()

interpreter = Tricklelnterpreter()
args = [interpreter]

print [Trickle Interpreter]’
else:
filename = self.args[1]
vr = Trickle(vm=self.rvm, name=self.args[1], args=self.
v = vr.vr_init()

vr.setVMattr('Trickle', filename)

if not rv:
print 'ERROR: vr_init() failed'
else:
self.cvr.console_in.setmvr(vr)
v = vr.run(*args)

return v

class TrickleInterpreter(cmd.Cmd):
intro = "Running Trickle in interactive mode...
Type "help" for more information.

prompt = ">>>
helpmsg = ""Trickle-specific functions:

connect
inject
fork
join

def preloop(self):
self,_history = ]

ied.'

args)

self._globals = globals()
self._locals = {}

def precmd(self, line):
self._history.append(line.strip())

return line

def do_history(self, arg):
for i in self._history:
print i

def do_help(self, arg):
print self.helpmsg

def do_EOF(self, arg):
return True

def emptyline(self):
pass

def default(self, line):
try:
exec line in self._locals, self._globals
except Exception, e:
traceback.print_exc()

do_quit = do_EOF
do_exit = do_EOF

if _name__ =="' main_"
sys.setrecursionlimit(100)

tl = TrickleLauncher()
try:
tl.parse_cmdline(sys.argv)
tl.launch()
tl.stop()
except RiverError, e:
print >> sys.stderr, 'ERROR:', e
except RiverExit:
pass

C.4 rMPI Base [mpi.py]

import sys, time, math, string, pickle, random, traceback,
from river.core.vr import VirtualResource

from river.core.debug import DBGR as DBG

from river.core.console import *

mpi_chunksize_bytes = 2**16-1000
mpi_calibration_list_size = 1024

inspect
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#
## MPI Datatypes and Helper Datatypes
#

# rMPI specific datatypes
class MPI_Int(object):
def __init_ (self, i=None):
self.value = i

def __repr__(self):
return '%d' % self.value

class MPI_Status( object ):
def __init_ ( self, *args ):
self MPI_SOURCE = MPI_Int(0)
selftMPI_TAG = 0
self.count = 0

class MPI_Comm( object ):

def __init_ ( self, _rankToUuid, _uuidToRank ):
self._rankToUuid = _rankToUuid
self._uuidToRank = _uuidToRank

#takes in a rank object, returns the uuid
def rankToUuid( self, rank ):
return self._rankToUuid[rank.value]

#takes in a uuid, returns the rank object
def uuidToRank( self, uuid ):
return MPI_Int( self._uuidToRank[uuid] )

# return a sorted list of available ranks in the communicator
def ranks(self):

ranklist = self._rankToUuid.keys()

ranklist.sort()

return ranklist

# GDB: add rank()

def size(self):
return len(self._rankToUuid.keys())

def has_uuid( self, uuid ):
return self._uuidToRank.has_key( uuid )

def has_rank( self, rank ):
return self._rankToUuid.has_key( rank.value )

class MPI_Group( object ):
#args = _rankToUuid, _uuidToRank
def __init_ ( self, *args ):
if len( args ) ==
self._rankToUuid = args[0]
self._uuidToRank = args[1]

else:
self._rankToUuid = None
self._uuidToRank = None

#sets a Null groups attributes, noop if called on a non null gr
def setmaps( self, _rankToUuid, _uuidToRank ):
self._rankToUuid = _rankToUuid
self._uuidToRank = _uuidToRank

def rankToUuid( self, rank ):
return self._rankToUuid[rank.value]

def uuidToRank( self, uuid ):
return self._uuidToRank[uuid]

def has_uuid( self, uuid ):
return self._uuidToRank.has_key( uuid )

def has_rank( self, rank ):
return self._rankToUuid.has_key( rank.value )

class Chunk(object):
def __init_ (self, offset, size):
self.offset = offset
self.size = size

class MPI_Datatype(object):
def __init_ (self):
# list of chunks
self.chunks = ]

# chunk count (may be less than len(chunks))
self.count = 0

# size of type as total number of elements
self.size = 0

# send method (pack, full send, or overlap)
self.method = None

def _ repr__(self):
return '<derived datatype>'

def add_chunk(self, offset, size):
for ¢ in self.chunks:
if c.offset + c.size == offset:
c.size += size
DBG('dd', '[dd:add_chunk] + %d at [%d]’,
size, c.offset)
return
elif offset + size == c.offset:
c.offset = offset
c.size += size
DBG('dd', '[dd:add_chunk] %d + at [%d]'
size, c.offset)

oup
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return

DBG('dd', '[dd:add_chunk] new size %d at offset %d',
size, offset)
self.chunks.append(Chunk(offset, size))

def copy_chunks(self, old_type, base):
for ¢ in old_type.chunks:
offset = base + c.offset
self.add_chunk(offset, c.size)

# Default communicator
MPI_COMM_WORLD = MPI_Comm( None, None )

# Technique to get enumerated constants
# We can easily add a new constant in an arbitrary position

class mpi_range(object):
def __init_ (self, start):
self.start = start
def next(self):
tmp = self.start
self.start += 1
return tmp

# Using larger ints to decrease chance of user error
mpi_robj = mpi_range(10007)

# MPI Datatypes

MPI_CHAR = mpi_robj.next()
MPI_INT = mpi_robj.next()
MPI_LONG = mpi_robj.next()
MPI_FLOAT = mpi_robj.next()
MPI_DOUBLE = mpi_robj.next()
# Datatype dictionary

mpi_types = {}
mpi_types[MPI_CHAR] = str
mpi_types[MPI_INT] = int

mpi_types[MPI_LONG] = long
mpi_types[MPI_FLOAT] = float
mpi_types[MPI_DOUBLE] = float

mpi_zero_values = {}
mpi_zero_values[MPI_CHAR] =""
mpi_zero_values[MPI_INT] =0
mpi_zero_values[MPI_LONG] = OL
mpi_zero_values[MPI_FLOAT] = 0.0
mpi_zero_values[MPI_DOUBLE] = 0.0

# Datatype sizes (hardcoded for now, based on pickle highest
mpi_types_size = {}

mpi_types_size[MPI_CHAR] =2

mpi_types_size[MPI_INT] =5

mpi_types_size[MPI_LONG] =5

protocol)

mpi_types_size[MPI_FLOAT] =9
mpi_types_size[MPI_DOUBLE] = 9

# MPI Operations

MPI_MAX = mpi_robj.next()
MPI_MIN = mpi_robj.next()
MPI_SUM = mpi_robj.next()
MPI_PROD = mpi_robj.next()
MPI_LAND = mpi_robj.next()
MPI_BAND = mpi_robj.next()
MPI_LOR = mpi_robj.next()
MPI_BOR = mpi_robj.next()
MPI_LXOR = mpi_robj.next()
MPI_BXOR = mpi_robj.next()
MPI_MAXLOC = mpi_robj.next()
MPI_MINLOC = mpi_robj.next()
# Operations dictionary

mpi_ops = {}

mpi_ops[MPI_MAX] = max
mpi_ops[MPI_MIN] = min

mpi_ops[MPI_SUM|]
mpi_ops[MPI_PROD]
mpi_ops[MPI_LAND]
mpi_ops[MPI_BAND]
mpi_ops[MPI_LOR]

lambda x, y: x +y
lambda x, y: x *y
lambda x, y: x and
lambda x, y: x & y
lambda x, y: x or y
mpi_ops[MPI_BOR] lambda x, y: x | y

mpi_ops[MPI_LXOR] lambda x, y: (x or y) and not (x and y)
mpi_ops[MPI_BXOR] = lambda x, y: x "y
mpi_ops[MPI_MAXLOC] = None

mpi_ops[MPI_MINLOC] = None

y

# MPI Errors

MPI_SUCCESS = mpi_robj.next()
MPI_ERR_COMM = mpi_robj.next()
MPI_ERR_TYPE = mpi_robj.next()
MPI_ERR_COUNT = mpi_robj.next()
MPI_ERR_TAG = mpi_robj.next()
MPI_ERR_RANK = mpi_robj.next()
MPI_ERR_ARG = mpi_robj.next()
MPI_ERR_OTHER = mpi_robj.next()

# Null Process Rank
MPI_PROC_NULL = MPI_Int(-1)

# Helpers

RANK_OFFSET = 1

HH

## Main mpi VirtualResource class
it

# ASF: chop and glue routines
# these need to be imported after the definition of MPI_Datat ype
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from chop import chop, Glue
class MPI( VirtualResource ):

# All VR's init here

def __init_ ( self, **kwargs ):
VirtualResource.__init__( self, **kwargs )
self.args = kwargs[‘args']
self.mpi_inited = False
selfmsg_uid = 0

# ASF: populate global namespace with MPI_* functions
# extra special Python trickery because globals() gives us
# the wrong global dictionary
#g = globals()
g = sys.modules[self.getName()].__dict__
for k in dir(self):
if k.startswith(MPI_"):
glk] = getattr(self, k)

# Initiator only falls thru to here, then to main
# GDB: fix -np
# np: number of processes
# nc: number of consoles to map
def vr_init( self, np=1, nc=1 ):
# Initiator is always rank 0
self.rank = None

# Find and get the number of available VMs requested
vmlist = self.discover()

# Allocate np VMs

nodes = self.allocate( vmlist[0:np] )

uuids = [vm['uuid] for vm in nodes]

self.control_vrs = [vm['cvr] for vm in nodes]

# Check number of VMs grabbed

needed = np

got = len( uuids )

if needed != got:
print ‘'needed %d VMs, but got %d' % (np, got)
self.deallocate( VMs=nodes )
return False

# Control VR reverse map

self.nconsoles = nc

self.cvrToRank = {}

for i, cvr in enumerate(self.control_vrs):
self.cvrToRank[cvr] = i

# Map their ranks (starting at 1. 0 is reserved for initiator)
self.rankToUuid = {}
for cur in uuids:

self.rankToUuid[uuids.index( cur )] = cur

# The reverse mapping
self.uuidToRank = {}

for cur in self.rankToUuid:
self.uuidToRank[self.rankToUuid[cur]] = cur

# For now, take it on faith that all deployments were succesfu |
# TODO: check deploy list against discover list for verifica tion
VMs = self.deploy( VMs=nodes, module=self. _module__,

func='nodeStart' )

# Set remote console access
for i in xrange(nc):
ConsoleClient(self.control_vrs]i], self)

# Tell everyone their ranks, the module name, and send the
# list of ranks
# for now assume everything goes ok
# GDB: move this to a deploy argument
for vr in uuids:
self.send( dest=vr, tag="ranks', ranks=self.rankToUuid ,
uuids=self.uuidToRank, rank=uuids.index( vr ) )

self.startfunc = self.initiatorStart
return True

def initiatorStart( self ):
active_vrs = len(self.uuidToRank)

# Wait for MPI VRs to complete and display remote console outp ut
while active_vrs:
p = self.recv()

if p.src in self.uuidToRank and p.tag == 'done"
active_vrs -= 1

elif p.src in self.control_vrs and p.command == ‘console":
print p.data,

else:
print 'Unrecognized packet: ', p

# Set remote console access
for cvr in self.control_vrs:
self.send(dest=cvr, type="__control__",
command="console', subcommand="unsetout’)

print 'All MPI processes have finished'

def nodeStart( self ):
master = self.parent
p = self.recv( src=master, tag="ranks' )
self.rank = MPI_Int( p.rank )
self.rankToUuid = p.ranks
self.uuidToRank = p.uuids

# ASF: add exception handling and print to stdout, which
# will be sent to the initiator
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try:
self.main(self.args)

except Exception, e:
traceback.print_exc(None, sys.stdout)

## can we check if console_out is done
self.send( dest = self.parent, tag="done’)
# Helper Functions

def isValidRank( self, rank, comm ):
return comm.has_rank( rank )

def islnited( self ):
return self.mpi_inited

def getMsguid( self ):
id = self.msg_uid
self.msg_uid = self.msg_uid + 1
return id

# Convert int ranks into MPL_Int values
def normalize_rank(self, rank):
if isinstance(rank, MPI_Int):
# TODO: why doesn't this work???
pass
elif rank.__class__.__name__ == 'MPI_Int"
pass
elif isinstance(rank, int):
rank = MPI_Int(rank)
else:
raise TypeError, rank must be MPL_Int or int, not %s' % type(

return rank
# Buffer/chunk calculations

def mpi_getchunksize(self, datatype):
if isinstance(datatype, MPI_Datatype):
# derived type
# TODO this calculation depends on base types in
# buffer
csize = mpi_chunksize_bytes / \
mpi_types_size[MPI_DOUBLE]
else:
# base types
csize = mpi_chunksize_bytes / \
mpi_types_size[datatype]

DBG('mpi', '[getchunksize] chunk size for type %s: %d',
datatype, csize)

return csize

H

rank)

## Environment Management Routines
it

def MPL_Init(self, *args):

if not self.isInited():
global MPI_COMM_WORLD
MPI_COMM_WORLD._rankToUuid = self.rankToUuid
MPI_COMM_WORLD._uuidToRank = self.uuidToRank
self.mpi_inited = True
del self.rankToUuid

else:
raise ValueError, 'MPI_Init called previously'

# Return a group of the processes associated with comm
def MPI_Comm_group( self, comm, group ):
group.setmaps( comm._rankToUuid, comm._uuidToRank )
return MPI_SUCCESS

def MPI_Comm_size( self, comm, size ):
size.value = len( comm._rankToUuid )
return MPI_SUCCESS

def MPI_Comm_rank( self, comm, rank ):
rank.value = comm.uuidToRank( self.uuid ).value
return MPI_SUCCESS

def MPI_Comm_split( self, oldComm, color, key, newComm ):
pass

# inclRanks is a list of ranks(ints) to include in the new grou
# This version of MPI_Group_incl knows the size of the new gro
# based on the number of processes in oldGroup
def MPI_Group_incl( self, oldGroup, num, inclRanks, newGr
rankToUuid = {}
uuidToRank = {}

for rank in inclRanks:
uuid = oldGroup._rankToUuid[rank]
rankToUuid[rank] = uuid
uuidToRank[uuid] = rank

newGroup.setmaps( rankToUuid, uuidToRank )

# Returns the number of processes in group

def MPI_Group_size( self, group, size ):
size.value = len( group._rankToUuid )
return MPI_SUCCESS

def MPI_Abort ( comm, errorcode ):
raise NotlmplementedError, 'MPI_Abort not implemented'

def MPI_Get_processor_name (name, resultlength ):

raise NotlmplementedError, 'MPI_Get_processor_name not
def MPI_Wtime( self ):

return time.time()

oup ):

implemented'
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def MPI_Wtick ():
raise NotlmplementedError, 'MPI_Wtick not implemented'

def MPI_Get_count( self, status, datatype, count ):
count.value = status.count

def MPI_Finalize( self ):
self.mpi_inited = False

#

# Send/Recv Engine

#

# mpi_send_buf()

# mpi_recv_buf()

#

# These are used to build all of the MPI communication functio
# both point to point and collective communication.

#

# Note that mpi_recv_buf() requires an offset parameter. Th
# parameter serves as a "pointer" into the recvbuf, thus avoi
# a temporary buffer.

# Send large bufs as a series of chunks to reduce memory footpr
def mpi_send_buf(self, buf, offset, count, datatype, dest
comm, typesig):
destUuid = comm.rankToUuid( dest )
chunksize = self.mpi_getchunksize(datatype)

# GDB: fix: compute send size based on datatype and count
if isinstance(datatype, MPI_Datatype):
sendsize = count * datatype.size
else:
sendsize = count
DBG('mpi', ‘[mpi_send_buf] sendsize: %d', sendsize)

mtype = 'large’
last = False

if sendsize <= chunksize:
mtype = ‘small

chunkcount = 0
total = 0
for ¢ in chop(buf, offset, count, datatype, chunksize):
chunkcount += 1
total += len(c)
if total >= sendsize:
last = True

self.send( dest=destUuid, tag=tag, buf=c,
mtype=mtype, last=last, typesig=typesig )

if mtype == 'large";
p = self.recv(src=destUuid, tag=tag, ack=True)

ns,

is
ding

int
, tag,

DBG('mpi', ‘[mpi_send_buf] sent %d chunks', chunkcount)

# Receive large bufs as a series of chunks to reduce memory foo
def mpi_recv_buf(self, buf, offset, count, datatype, src,
comm, typesig):
srcUuid = comm.rankToUuid( src )
g = Glue(datatype, buf, offset)

chunkcount = 0
while True:
p = self.recv(src=srcUuid, tag=tag, typesig=typesig)
if p.mtype == 'large"
self.send( dest=srcUuid, tag=tag, ack=True )

g.glue(p.buf)
chunkcount += 1
if p.last:

break

DBG('mpi', '[mpi_recv_buf] received %d chunks', chunkcou

#
## Point to Point Communication Routines
##

# Notes
# - Tags can be and int or mpi_Tag()
# - Perform sanity checks to help programmer

def MPI_Send( self, buf, count, datatype, dest, tag, comm ):
# Parameter sanity checks
dest = self.normalize_rank(dest)
offset = 0

if isinstance(buf, tuple):
buf,offset = buf

if not isinstance(buf, list):
raise TypeError, 'buf must be a list'

# derived datatype
if not isinstance(datatype, MPI_Datatype) and \
not isinstance(buf[0], mpi_types[datatype]):
raise TypeError, 'buf type and datatype do not match'

if len(buf) < count:
raise ValueError, 'buf length < count'

# compute type signature
if isinstance(datatype, MPI_Datatype):
# TODO: depends on entries in buffer
typesig = (MPI_DOUBLE, datatype.size)
else:
typesig = (datatype, count)

DBG('mpi', ‘[send] type signature: %s', typesig)

tag,

nt)

tprint
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if destvalue !'= MPI_PROC_NULL.value:
self.mpi_send_buf(buf, offset, count, datatype, dest,
tag, comm, typesig)

return MPI_SUCCESS

def MPI_Recv( self, buf, count, datatype, src, tag, comm, st atus ):
# Parameter sanity checks
src = self.normalize_rank(src)
offset = 0

if isinstance(buf, tuple):
bufoffset = buf

if not isinstance(buf, list):
raise TypeError, 'buf must be a list'

# derived datatype
if not isinstance(datatype, MPI_Datatype) and \
not isinstance(buf[0], mpi_types[datatype]):
raise TypeError, 'buf type and datatype do not match'

#if len(buf) < self.getbufsize(count):

if len(buf) < count;
print "[MPI_Recv]buf=%s/count=%d" % (buf, count)
raise ValueError, 'buf length < count'

# compute type signature
if isinstance(datatype, MPI_Datatype):
# TODO: depends on entries in buffer
typesig = (MPI_DOUBLE, datatype.size)
else:
typesig = (datatype, count)

DBG('mpi', '[recv] type signature: %s', typesig)

if src.value != MPI_PROC_NULL.value:
srcUuid = comm.rankToUuid( src )
self.mpi_recv_buf(buf, offset, count, datatype, src,
tag, comm, typesig)
if status != None:
status.MPI_SOURCE = src
status.MPI_TAG = tag
# GDB: change to real receive count
status.count = len(buf)

return MPI_SUCCESS

def MPI_Sendrecv(self, sendbuf, sendcount, sendtype, des t, sendtag,
recvbuf, recvcount, recvtype, src, recvtag, comm, status) :

dest = self.normalize_rank(dest)
src = self.normalize_rank(src)

if (src.value != MPI_PROC_NULL.value) and \
(dest.value != MPI_PROC_NULL.value):
self.MPI_Send(sendbuf, sendcount, sendtype, dest,
sendtag, comm)
self. MPI_Recv(recvbuf, recvcount, recvtype, src,
recvtag, comm, status)

return MPI_SUCCESS

#
## Collective Communcation Routines
#

def MPI_Barrier( self, comm ):
root = MPL_Int(0)

# Gather then Bcast
self. MPI_Gather( [0], 1, MPL_INT, [0], 1, MPL_INT, root, co
self.MPI_Bcast( [0], 1, MPL_INT, root, comm )

return MPI_SUCCESS

def MPI_Bcast( self, sendbuf, count, datatype, root, comm )
root = self.normalize_rank(root)
msgUid = self.getMsgUid()

# Root sends to all processes
if self.uuid == comm.rankToUuid( root ):
for r in comm.ranks():
if r 1= root.value:
self. MPI_Send(sendbuf, count, datatype,
MPI_Int(r), msgUid, comm)

# Others receive from root
else:
status = MPI_Status()
self. MPI_Recv(sendbuf, count, datatype, root, msguid,
comm, status)

return MPI_SUCCESS

# Distribute the contents of root sendbuf into recvbufs of al
# processes
def MPI_Scatter( self, sendbuf, sendcount, sendtype, recv
recvcount, recvtype, root, comm ):
root = self.normalize_rank(root)

msgUid = self.getMsgUid()

# Root sends to everyone
if self.uuid == comm.rankToUuid( root ):
for cur in comm.ranks():
start = cur * sendcount
end = start + sendcount
if cur != root.value:
self. MPI_Send((sendbuf, start),

buf,

| the
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sendcount, sendtype, MPI_Int(cur),
msgUid, comm)
else:
recvbuf[O:recvcount] =\
sendbuf[start:end]

# Others receive from root
else:
self. MPI_Recv(recvbuf, recvcount, recvtype,
root, msgUid, comm, MPI_Status())

return MPI_SUCCESS

# Collect the contents of each procs sendbuf into recvbuf on t he proc
# with rank root
def MPI_Gather( self, sendbuf, sendcount, sendtype, recvb uf, recvcount,

recvtype, root, comm ):
root = self.normalize_rank(root)
msgUid = self.getMsgUid()
destUuid = comm.rankToUuid(root)

# Everyone sends to root
if self.uuid != destUuid:
self. MPI_Send(sendbuf, sendcount, sendtype,
root, msgUid, comm)
# Root recvs from everyone in comm
else:
for i in comm.ranks():
start = i * recvcount
end = start + recvcount
if i != root.value:
self. MPI_Recv((recvbuf, start),
recvcount, recvtype, MPI_Int(i),
msgUid, comm, MPI_Status())
else:
recvbuf[start:end] = sendbuf

return MPI_SUCCESS

def MPI_Allgather( self, sendbuf, sendcount, sendtype, re cvbuf,
recvcount, recvtype, comm ):
root = MPL_Int( 0 )

self. MPI_Gather( sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm )

self.MPI_Bcast( recvbuf, recvcount * comm.size(), recvty pe,
root, comm )

return MPI_SUCCESS

def MPI_Reduce( self, sendbuf, recvbuf, count, datatype, o perator,
root, comm ):
root = self.normalize_rank(root)

if not operator in mpi_ops:
raise TypeError, 'invalid operator'
op = mpi_ops[operator]

size = comm.size()
rank = comm.uuidToRank(self.uuid)

# Temporary list buffer for the operands
temp = [ mpi_zero_values[datatype] ] * (count * size)

self.MPI_Gather( sendbuf, count, datatype, temp, count,
datatype, root, comm )

if rank.value == root.value:
for i in xrange(count):
recvbuffi] = templi]
for j in xrange(l, size):
recvbuffi] = op(recvbufi],
temp[j*count])

return MPI_SUCCESS

def MPI_Allreduce( self, sendbuf, recvbuf, count, datatyp
comm ):
root = MPL_Int( 0 )
self.MPI_Reduce( sendbuf, recvbuf, count, datatype, oper
root, comm )
self.MPI_Bcast( recvbuf, count, datatype, root, comm )

return MPI_SUCCESS

def MPI_Reduce_scatter( self, sendbuf, recvbuf, count, da
operator, comm ):
root = MPL_Int( 0 )

reduceTemp = recvbuf * comm.size()
reduceSize = count * comm.size()

self. MPI_Reduce( sendbuf, reduceTemp, reduceSize, datat
operator, root, comm )

self. MPI_Scatter( reduceTemp, count, datatype, recvbuf,
datatype, root, comm )

return MPI_SUCCESS

def MPI_Alltoall( self, sendbuf, sendcount, sendtype, rec
recvcount, recvtype, comm ):

for i in xrange(comm.size()):
root = MPLInt( i)
tempbuf = [ mpi_zero_values[recvtype] ] * sendcount
self.MPI_Scatter( sendbuf, sendcount, sendtype,
tempbuf, recvcount, recvtype, root, comm )
recvbuffi*sendcount : (i+1)*sendcount] = tempbuf

return MPI_SUCCESS

e, operator,

ator,

tatype,

Ype,

count,

vbuf,
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def MPI_Scan( self, sendbuf, recvbuf, count, datatype, ope
if not operator in mpi_ops:
raise TypeError, ‘invalid operator'
op = mpi_ops[operator]

size = comm.size()
rank = comm.uuidToRank(self.uuid)

# Temporary list buffer for the operands
temp = [ mpi_zero_values[datatype] ] * (count * size)

self.MPI_Allgather( sendbuf, count, datatype, temp, coun
datatype, comm )

for i in xrange(count):
recvbuffi] = templi]
for j in xrange(l, self.rank.value + 1):
recvbuffi] = op(recvbuf[i],temp[j*count])

return MPI_SUCCESS

C.5 rMPI Derived Datatypes [dd.py]

# deprived datatypes for rMPI
from mpi import *
from river.core.debug import DBGR as DBG

DDT_FULL_SEND = mpi_robj.next()
DDT_PACK_SEND = mpi_robj.next()
DDT_OVERLAP_SEND = mpi_robj.next()
DDT_SMALL = 4096

class MPI_DD (MPI):
def MPI_Type_contiguous(self, count, old_type, new_type
# old type must exist (either basic or derived)
# at the same time, calculate number of chunks required
if isinstance(old_type, MPI_Datatype):
k = old_type.count * count
elif mpi_types.has_key(old_type):
k=1
else:
return MPI_ERR_ARG

DBG('dd', '[dd:contiguous] at most %d chunks', k)

# copy chunks from old_type count times
if isinstance(old_type, MPI_Datatype):
n = old_type.size
w = old_type.width
for i in xrange(count):
new_type.copy_chunks(old_type, i)

# one contiguous chunk

rator, comm ):

else:
n=1
w =1
new_type.add_chunk(0, count)

new_type.count = len(new_type.chunks)
new_type.size = n * count
new_type.width = w * count

# "register" the new type
mpi_types[new_type] = mpi_robj.next()

DBG('dd', '[dd:contiguous] size: %d count: %d width: %d',
new_type.size, new_type.count, new_type.width)

return MPI_SUCCESS

def MPI_Type_struct():
pass

# count: number of elements in the type
# block_length: number of entries in each element
# stride: num of elements of type old_type between successiv
def MPI_Type_vector(self, count, block_length, stride, o
# old type must exist (either basic or derived)
# at the same time, calculate number of chunks required
if isinstance(old_type, MPI_Datatype):
k = old_type.count * count * block_length
elif mpi_types.has_key(old_type):
k = count * block_length
else:
return MPI_ERR_ARG

DBG('dd', '[dd:vector] at most %d chunks', k)

if isinstance(old_type, MPI_Datatype):
n = block_length * old_type.size
w = block_length * old_type.width
for i in xrange(count):
offset = i * stride * old_type.width
DBG('dd', ' %d %d %d = %d' i, stride, w, offset)
DBG('dd', '[dd:vector] %d * %d chunks from old',
block_length, old_type.count)
for j in xrange(block_length):
new_type.copy_chunks(old_type,
offset + )

# base type: each element is its own chunk
else:
n = block_length
w = block_length
for i in xrange(count):
offset = i * stride
new_type.add_chunk(offset, block_length)

new_type.count = len(new_type.chunks)

e elements
|d_type, new_type):
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new_type.size = n * count
new_type.width = w

# "register" the new type
mpi_types[new_type] = mpi_robj.next()

DBG('dd', '[dd:vector] size: %d count: %d width: %d',
new_type.size, new_type.count, new_type.width)

return MPI_SUCCESS

def MPI_Type_indexed():
pass

def MPI_Type_commit(self, ddt):
if not isinstance(ddt, MPI_Datatype):
return MPI_ERR_ARG

DBG('dd', '[dd:commit] original size: %d count: %d',
ddt.size, ddt.count)

newchunks = []
for ¢ in ddt.chunks:
DBG('dd', '%3d [%3d], c.offset, c.size)

p = ddt.chunks.pop(0)
for ¢ in ddt.chunks:
if p.offset + p.size == c.offset:
p.size += c.size
elif c.offset + c.size == p.offset:
p.offset = c.offset
p.size += c.size
else:
newchunks.append(p)
p=c
newchunks.append(p)

ddt.chunks = newchunks
ddt.count = len(newchunks)

DBG('dd', '[dd:commit] new size: %d count: %d',
ddt.size, ddt.count)

for ¢ in ddt.chunks:
DBG('dd', '%3d [%3d]', c.offset, c.size)

if ddt.count == 1:
ddt.method = DDT_FULL_SEND
else:
if ddt.size <= DDT_SMALL:
ddt.method = DDT_PACK_SEND
else:
ddt.method = DDT_OVERLAP_SEND

def MPI_Pack(self, inbuf, incount, datatype, outbuf, outs
position, comm):

ize,

if isinstance(inbuf, tuple):
inbuf,base = inbuf
else:
base = 0

if isinstance(outbuf, tuple):
outbuf,out_off = outbuf
else:
out_off = 0

if not isinstance(inbuf, list) or \
not isinstance(outbuf, list) or \
not isinstance(position, MPI_Int):
return MPI_ERR_ARG

pos = out_off + position.value

if not isinstance(datatype, MPI_Datatype):
outbufpos:pos+incount] = inbuf[:incount]
position.value += incount
return MPI_SUCCESS

for i in xrange(incount):

for ¢ in datatype.chunks:
if c.size == 0: continue
offset = base + c.offset
n = c.size
outbuf[pos:pos+n] = inbuf{offset:offset+n]
pos += n

base += datatype.size

position.value = pos - out_off

return MPI_SUCCESS

def MPI_Unpack(self, inbuf, insize, position, outbuf, out

datatype, comm):
if isinstance(inbuf, tuple):
inbuf,in_off = inbuf
else:
in_off = 0

if isinstance(outbuf, tuple):
outbuf,base= outbuf
else:
base = 0

if not isinstance(inbuf, list) or \
not isinstance(outbuf, list) or \
not isinstance(position, MPI_Int):
return MPI_ERR_ARG

pos = in_off + position.value
if not isinstance(datatype, MPI_Datatype):

outbuf[base:base+outcount] = inbuf[pos:pos+outcount]

position.value += outcount
return MPI_SUCCESS

count,
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# stage 2. confirmed with post

for i in xrange(outcount): trans_stat_work = "work"
for ¢ in datatype.chunks: # stage 3. done
offset = base + c.offset trans_stat_done = "done"
n = c.size
outbufoffset:offset+n] = inbuf[pos:pos+n] class MPI_Request( object ):
pos += n def __init_ ( self, *args ):
base += datatype.size self.type = None
self.source = None
position.value = pos - in_off self.dest = None
selftag = 0
return MPI_SUCCESS self.count = 0
self.comm = None
def MPI_Type_hvector(): self.buffer = None
pass self.datatype = None
self.offset = 0
def MPI_Type_hindexed(): ## type signature for derived datatype
pass self.typesig = None
self.chops = None
def MPI_Type_free(self, datatype): self.sendsize = 0
pass self.gluebuf = None
self.recvsize = 0
def MPI_Type_extent(): ## the attrs for TransManager
pass self.trans_sender = 0
self.trans_recver = 0
def MPI_Type_size(): self.trans_id = 0
pass self.trans_status = trans_stat_new

self.trans_chunknum = 0
def MPI_Type_lIb():

pass def __repr__(self):
output = None
def MPI_Type_ub(): if self.type == MPI_REQ_SEND:
pass output = "[SendRequest] destRank=%s, " % self.dest.value
elif self.type == MPI_REQ_RECV:
def MPI_Address(): output = "[RecvRequest] srcRank=%s, " % self.source.value
pass return output + "tag=%s, sender=%s, recver=%s, status=%s, chunknum=%d" \

% (selftag, self.trans_sender, self.trans_recver,
self.trans_status, self.trans_chunknum)

C.6 rMPI Non-blocking [nbmpi.py] class MPLNB( MP1 )

## override MPI_Init to initiate TransManager

import sys, time, math, string, pickle, random def MPL_Init( self ):
from river.core.vr import VirtualResource if not self.isInited():
from river.core.debug import * global MPI_COMM_WORLD
from river.core.console import * MPI_COMM_WORLD._rankToUuid = self.rankToUuid
from mpi import * MPI_COMM_WORLD._uuidToRank = self.uuidToRank
from chop import chop, Glue self.mpi_inited = True
del self.rankToUuid

## Request Type self.transManager = TransManager()
MPI_REQ_SEND = mpi_robj.next() else:
MPI_REQ_RECV = mpi_robj.next() raise ValueError, 'MPI_Init called previously'
MPI_REQUEST_NULL = mpi_robj.next()

## To make blocking operations interact with nonblocking op erations
# stage 1. registered ## override MPI_Send and MPI_Recv to use TransManager

trans_stat_new = "new"
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def MPI_Send( self, buf, count, datatype, dest, tag, comm ):
send_request = MPI_Request()

self. MPI_Isend(buf, count, datatype, dest, tag, comm, sen
self.trans_process_request(send_request)

return MPI_SUCCESS

def MPI_Recv( self, buf, count, datatype, src, tag, comm, st
recv_request = MPI_Request()

self.MPI_Irecv(buf, count, datatype, src, tag, comm, recv
self.trans_process_request(recv_request)

return MPI_SUCCESS

## Nonblocking P2P operations
def MPI_Isend( self, buf, count, datatype, dest, tag, comm,
offset = 0
if isinstance(buf, tuple):
buf,offset = buf

if not isinstance(buf, list):
raise TypeError, 'buf must be a list'

# derived datatype
if not isinstance(datatype, MPI_Datatype) and \
not isinstance(buf[0], mpi_types[datatype]):
raise TypeError, 'buf type and datatype do not match'

if len(buf) < count;
raise ValueError, 'buf length < count'

# compute type signature
if isinstance(datatype, MPI_Datatype):
# TODO: depends on entries in buffer
request.typesig = (MPI_DOUBLE, datatype.size)
else:
request.typesig = (datatype, count)

DBG('mpi', '[send] type signature: %s', request.typesig)

# Parameter sanity checks
dest = self.normalize_rank(dest)
destUuid = comm.rankToUuid( dest )

if dest.value == MPI_PROC_NULL.value:
return MPI_ERR_RANK

chunksize = self.mpi_getchunksize(datatype, count)
request.type = MPI_REQ_SEND

# save the rank obj

request.dest = dest

request.tag = tag

request.comm = comm

d_request)

atus ):

_request)

request):

request.count = count

request.buffer = buf

request.datatype = datatype

request.offset = offset

request.chops = chop(buf, offset, count, datatype, chunks

if isinstance(datatype, MPI_Datatype):
request.sendsize = count * datatype.size
else:
request.sendsize = count

self.transManager.register(request)

## send the sendpost

self.send( dest=destUuid, tag=tag, mtype="sendpost",
sender=request.trans_sender)

return MPI_SUCCESS

# MPI_Irecv (&buf,count,datatype,source,tag,comm,&req
def MPI_Irecv( self, buf, count, datatype, src, tag, comm, r

offset = 0
if isinstance(buf, tuple):
buf,offset = buf

if not isinstance(buf, list):
raise TypeError, 'buf must be a list'

# derived datatype
if not isinstance(datatype, MPI_Datatype) and \
not isinstance(buf[0], mpi_types[datatype]):

raise TypeError, 'buf type and datatype do not match’

if len(buf) < count:
raise ValueError, 'buf length < count'

# compute type signature
if isinstance(datatype, MPI_Datatype):
# TODO: depends on entries in buffer
request.typesig = (MPI_DOUBLE, datatype.size)
else:
request.typesig = (datatype, count)

# Parameter sanity checks
src = self.normalize_rank(src)
srcUuid = comm.rankToUuid( src )

if src.value == MPI_PROC_NULL.value:
return MPI_ERR_RANK

request.type = MPI_REQ_RECV
# save the rank obj
request.source = src
request.tag = tag

request.comm = comm
request.count = count
request.buffer = buf

uest)

ize)

equest ):
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request.datatype = datatype

request.offset = offset

request.gluebuf = Glue(datatype, buf, offset)

self.transManager.register(request)

## send the recvpost

self.send(dest=srcUuid, tag=tag, mtype="recvpost",
recver=request.trans_recver)

return MPI_SUCCESS

def MPI_Wait(self, request, status):
DBG(trans', 'MPI_Wait request= %s', request)

if request == MPI_REQUEST_NULL:
return MPI_SUCCESS

self.trans_process_request(request)

## set up status

if request.type == MPI_REQ_RECV:
status.MPI_SOURCE = request.source
status.MPI_TAG = request.tag
status.count = request.recvsize

request = MPI_REQUEST_NULL

return MPI_SUCCESS

def MPI_Waitall(self, count, requests, statuses):
if len(requests) < count:
raise ValueError, 'request size < count'
if len(requests) != len(statuses):
raise ValueError, 'request size is not equal to status size'

for i in xrange(count):
self. MPI_Wait(requests[i], statuses]i])

return MPI_SUCCESS

# Send chunks on demand
def trans_send_chunk(self, request):
destUuid = request.comm.rankToUuid( request.dest )

sendchunk = request.chops.next()

request.sendsize -= len(sendchunk)
if (request.sendsize <= 0):

last = True

request.trans_status = trans_stat_done
else:

last = False

self.send(dest=destUuid, tag=request.tag, buf=sendchu
last=last, typesig=request.typesig, recver=request.tr

nk, mtype="send",
ans_recver)

request.trans_chunknum += 1

DBG('trans', 'trans_send_chunk after = %s', request)

## receive buffer from packet and ask for next buffer if there
def trans_recv_packet(self, p, request):

offset = request.offset

request.gluebuf.glue(p.buf)

request.recvsize += len(p.buf)

if p.last == False:
srcUuid = request.comm.rankToUuid( request.source )
## ask for next chunk
self.send(dest=srcUuid, mtype="recv", tag=request.tag
sender=request.trans_sender )
else:
request.trans_status = trans_stat_done

request.trans_chunknum += 1
DBG('trans', 'trans_recv_packet after = %s', request)

def trans_process_request(self, request):
if request.trans_status == trans_stat_done:
## unregister the request
self.transManager.unregister(request)
return

## A confirmed send request and the first chunk is not sent yet
if request.type==MP|_REQ_SEND \
and request.trans_status == trans_stat_work \
and request.trans_chunknum ==
self.trans_send_chunk(request)

while (request.trans_status != trans_stat_done):
DBG('trans', 'TransManager = %s', self.transManager)
p = self.recv(dest=self.uuid,
mtype=(lambda x: x=='sendpost' or x=="recvpost' \
or x=="send' or x=="recv'))

DBG('trans', 'recv package = %s', p)
## source's rank value
srcRankValue = self.uuidToRank[p.src]
if p.mtype == "sendpost" :

## receive send post

recvreq = self.transManager.recvready(srcRankValue, p.

p.sender)

elif p.mtype == "recvpost":
## receive recv post
sendreq = self.transManager.sendready(srcRankValue,
p.tag, p.recver)
## if sendreq is not registered yet,
## this post will be save in transManager.recvqueue
if sendreq != None:
# start to send

is one

tag,
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self.trans_send_chunk(sendreq)

elif p.mtype == "send":
req = self.transManager.getreq(p.recver)
self.trans_recv_packet(p, req)

elif p.mtype == "recv":
sendreq = self.transManager.getreq(p.sender)
self.trans_send_chunk(sendreq)

else:
print "trans: unexpected packet=", p

## unregister the request
self.transManager.unregister(request)
return

class TransManager( object ):
def __init_ ( self, *args ):

self.transmap = {}
self.rcount = 0
## request wait for ACK
self.newsend = ]
self.newrecv = []
## might receive ACK for future requests
self.sendqueue = []
self.recvqueue = []

def _ str_ (self):
output = "Requests=%s/ new send=%s, new recv=%s / sendgq=%s,
% (self.transmap, self.newsend, self.newrecv, self.send
self.recvqueue)
return output

def register(self, request):
self.rcount += 1
request.trans_id = self.rcount
if request.type == MPI_REQ_SEND:
self.registerSend(request)
elif request.type == MPI_REQ_RECV:
self.registerRecv(request)

self.transmap(request.trans_id] = request
return

def registerSend(self, sendreq):
sendreq.trans_sender = sendreg.trans_id
DBG('trans', 'registerSend= %s', sendreq.trans_id)

## check if vr received ACK already
for ack in self.sendqueue :
## ack = [dest,tag,recver]
if ack[0] == sendreq.dest.value and ack[l] == sendreq.tag:
sendreq.trans_recver = ack[2]
sendreq.trans_status = trans_stat_work

recvg=%s " \
queue,

self.sendqueue.remove(ack)
DBG(trans', 'send request is confirmed= %s', sendreq)
break

## no ack yet, it is a new send request
if sendreq.trans_status == trans_stat_new :
self.newsend.append(sendreq.trans_id)

def registerRecv(self, recvreq):
recvreq.trans_recver = recvreq.trans_id
DBG('trans', 'registerRecv= %s', recvreq.trans_id)

## check if vr received ACK already
for ack in self.recvqueue:
## ack = [src,tag,sender]
if ack[0] == recvreq.source.value and ack[1] == recvreg.ta
recvreq.trans_sender = ack[2]
recvreg.trans_status = trans_stat_work
self.recvqueue.remove(ack)
DBG(trans', 'recv request is confirmed= %s', recvreq)
break

## no ack yet, it is a new recv request
if recvreg.trans_status == trans_stat_new :
self.newrecv.append(recvreq.trans_id)

def sendready(self, dest, tag, recver):
sendreq = None
found = False
## match the first new send request
for ns in self.newsend:
sendreq = self.transmap[ns]
if sendreq.dest.value == dest and sendreq.tag == tag:
sendreq.trans_recver = recver
sendreq.trans_status = trans_stat_work
found = True
break

if not found:
## save the post for future send requests
DBG('trans', 'unknown recvpost: dest=%s, tag=%s', dest, t
self.sendqueue.append([dest,tag,recver])
sendreq = None

else:
DBG('trans', 'send request is confirmed= %s', sendreq)
self.newsend.remove(sendreq.trans_id)

return sendreq

def recvready(self, src, tag, sender):
recvreq = None
found = False
for ns in self.newrecv:
recvreq = self.transmap[ns]
## match the first new recv request
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if recvreg.source.value == src and recvreq.tag == tag:
recvreq.trans_sender = sender
recvreg.trans_status = trans_stat_work
found = True
break

if not found:
## save the post for future recv requests
DBG(trans', 'unknown sendpost: src=%s, tag=%s', src, tag
self.recvqueue.append([src,tag,sender])
recvreq = None

else:
DBG(trans', 'recv request is confirmed= %s', recvreq)
self.newrecv.remove(recvreq.trans_id)

return recvreq

def getreq(self, trans_id):
return self.transmap[trans_id]

def unregister(self, request):
try:
del self.transmap[request.trans_id]
except KeyError:
pass

C.7 rMPI Optimized Collectives [optmpi.py]

import sys, time, math, string, pickle, random
from river.core.vr import VirtualResource

from river.core.debug import *

from river.core.console import *

from nbmpi import *

## inherit from nonblocking mpi
## Optimized Collective operations
class MPI_OPTCC( MPI_NB ):

""" the dissemination algorithm
It uses ceiling(lgp) steps. In step k, 0 <= k <= (ceiling(lgp)
process i sends to process (i + 2°k) % p and receives from proce
(i-2k+p) %p.
## override MPI_Barrier
def MPI_Barrier( self, comm ):

sendbuf = [1]

recvbuf = [0]

msgUid = self.getMsgUid()
status = MPI_Status()

i = self.rank.value

p = comm.size()
steps = int(math.ceil(math.log(p, 2)))
for k in xrange(steps):
dest = (i + 2**k) %p
src = (i - 2"k + p) %p
recv_request = MPI_Request()

self. MPI_Irecv(recvbuf, 1, MPI_INT, MPI_Int(src), msgUi d, comm,

recv_request)

self.MPI_Send(sendbuf, 1, MPI_INT, MPL_Int(dest), msgUi d, comm)

self.MPI_Wait(recv_request, status)
return MPI_SUCCESS

def MPI_Reduce_Rabens( self, sendbuf, recvbuf, count, dat
root, comm ):

root = self.normalize_rank(root)

# use Recursive Halving Reduce Scatter

self.MPI_Reduce_scatter_RecHalv( sendbuf, recvbuf, cou nt, datatype,
operator, comm )

# binomial gather

MPI_Gather_Binomial(sendbuf, sendcount, sendtype, recv
recvtype, root, comm)

def MPI_Gather_Binomial( self, sendbuf, sendcount, sendt ype,
recvbuf, recvcount, recvtype, root, comm ):
root = self.normalize_rank(root)
size = comm.size()
rank = comm.uuidToRank(self.uuid)

status = MPI_Status()
msgUid = self.getMsgUid()

# number of steps

steps = int(math.ceil(math.log(size, 2)))

# in case root is not 0

taskRankValue = (rank.value-root.value)%size

recvbuflrank.value*sendcount:(rank.value+1)*sendcou nt] = sendbuf

for step in xrange(steps):
taskPair = taskRankValue ~ (2 ** step)
# real rank of the pair node
pair = (taskPair+root.value)%size

if taskPair >= size:
# pair doesn't exist
continue

count = 2*step * sendcount
if taskRankValue > taskPair:
sendnode = rank.value
else:
sendnode = pair

atype, operator,

buf, recvcount,
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if (sendnode*sendcount + count) > len(recvbuf):
count = len(recvbuf) - sendnode*sendcount
sendindex = sendnode * sendcount

if rank.value == sendnode:
## send data
self. MPI_Send((recvbuf, sendindex), count, sendtype,
MPI_Int(pair), msgUid, comm)
## once data is sent, the node is not in computation anymore
break;
else:
## recv data
self. MPI_Recv((recvbuf, sendindex), count, sendtype,
MPI_Int(pair), msgUid, comm, MPI_Status())

return MPI_SUCCESS
def MPI_Reduce_Binomial( self, sendbuf, recvbuf, count, d

root, comm ):
root = self.normalize_rank(root)

atatype, operator,

if not operator in mpi_ops:
raise TypeError, ‘invalid operator'
op = mpi_ops[operator]

size = comm.size()
rank = comm.uuidToRank(self.uuid)

#copy sendbuf to recvbuf

recvbuf:] = sendbuf[}]

# Temporary list buffer for the operands
temp = [ mpi_zero_values[datatype] ] * count
status = MPI_Status()

msgUid = self.getMsgUid()

# number of steps

steps = int(math.ceil(math.log(size, 2)))

# in case root is not 0

taskRankValue = (rank.value-root.value)%size

for step in xrange(steps):

taskPair = taskRankValue ~ (2 ** step)

# real rank of the pair node

pair = (taskPair+root.value)%size

if taskPair >= size:
# pair doesn't exist
continue

elif taskRankValue > taskPair:
## send data
self. MPI_Send(recvbuf, count, datatype, MPI_Int(pair),

msgUid, comm)

## once data is sent, the node is not in computation anymore
break;

else:
## recv data

self. MPI_Recv(temp, count, datatype, MPI_Int(pair), msg Uid,
comm, status)
## do the operation
for i in xrange(count):
recvbuffi] = op(recvbuf[i],templ[i])

del temp
return MPI_SUCCESS

## ToDo: use nonblocking p2p instead
def MPI_Reduce_scatter_RecHalv( self, sendbuf, recvbuf, count, datatype,
operator, comm ):
## recursive halving
## this only works with power-of-2 processors
size = comm.size()
power2 = math.floor(math.log(size, 2))
steps = int(math.ceil(math.log(size, 2)))
if power2 != steps :
return MPI_ERR_OTHER

if not operator in mpi_ops:
raise TypeError, ‘invalid operator'
op = mpi_ops[operator]

msgUid = self.getMsgUid()
status = MPI_Status()

## only allocate tempbuf once
tempbuf = [ mpi_zero_values[datatype] ] * (size/2 * count)
for step in xrange(steps):
## halving the distance
distance = size/2**(step+1)
# the node to exchange data
# use XOR to find the pair node
pairNode = self.rank.value ~ distance
# sendindex depends on the pair node's "group"
sendindex = (pairNode/distance) * count
sendSize = distance * count

if self.rank.value < pairNode :
self. MPI_Send((sendbuf, sendindex), sendSize, datatype ,
MPI_Int(pairNode), msgUid, comm)
self. MPI_Recv(tempbuf, sendSize, datatype, MPI_Int(pai rNode),
msgUid, comm, status)
else:
self. MPI_Recv(tempbuf, sendSize, datatype, MPI_Int(pai rNode),
msgUid, comm, status)
self. MPI_Send((sendbuf, sendindex), sendSize, datatype ,
MPI_Int(pairNode), msgUid, comm)
# print "tempbuf=", tempbuf
# perform the predefined operation
# operation index also depends on the node's "group”
optindex = (self.rank.value/distance) * distance * count
for i in xrange(sendSize):
sendbuf[optindex+i] = op(sendbuf{optindex+i], tempbuf] i)
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## halving the tempory buffer
del tempbuf[(sendSize/2):]

## recvbuf is one chunk of sendbuf
recvbuf:] = sendbuf[self.rank.value*count : (self.rank

return MPI_SUCCESS

def MPI_Alltoall_Bruck( self, sendbuf, sendcount, sendty

recvbuf, recvcount, recvtype, comm ):

size = comm.size()
rank = comm.uuidToRank(self.uuid)

status = MPI_Status()
msgUid = self.getMsgUid()

## local ratation
recvbuf:] = sendbuf[rank.value*sendcount] + \
sendbuf[:rank.value*sendcount]

steps = int(math.ceil(math.log(size, 2)))

for step in xrange(steps):
destNode = (rank.value + 2 ** step) % size
srcNode = (rank.value - 2 ** step) % size

sendindex = 2**step * sendcount
sendSize = 2**step * sendcount
sendchunk = []
while (sendindex<len(sendbuf)):
if (sendindex+sendSize > len(sendbuf)):
sendSize = sendIndex+sendSize - len(sendbuf)
send_request = MPI_Request()
recv_request = MPI_Request()

value+1)*count]

pe,

## it is not safe to use recvbuf for both Isend and Irecv

self.MPI_Isend((recvbuf, sendindex), sendSize, sendtyp

MPI_Int(destNode), msgUid, comm, send_request)

self. MPI_Irecv((recvbuf, sendindex), sendSize, recvtyp

MPI_Int(srcNode), msgUid, comm, recv_request)

self. MPI_Wait(send_request, status)
self. MPI_Wait(recv_request, status)

sendindex = sendindex + 2**(step+1) * sendcount
## inverse rotation
recvbuf.extend(recvbuf:(rank.value+1)*sendcount])
del recvbuf:(rank.value+1)*sendcount]
recvbuf.reverse()

return MPI_SUCCESS

def MPI_Allgather_Dissem( self, sendbuf, sendcount, send
recvcount, recvtype, comm )

type, recvbuf,

msgUid = self.getMsgUid()

size = comm.size()

power2 = math.floor(math.log(size, 2))

steps = int(math.ceil(math.log(size, 2)))
statuses = [MPI_Status(), MPI_Status()]

## copy self sendbuf to end of recvbuf
## recvbuf is filled upward
recvbuf](size-1)*sendcount;] = sendbuf
for step in xrange(steps):
if (step == power2):
## the last stage for non-power of 2
sendindex = 2**step * sendcount
recvindex = 0
sendcnt= (size - 2**step) * sendcount
else:
sendindex = (size - 2**step) * sendcount
recvindex = (size - 2**(step+1)) * sendcount
sendcnt = (2**step) * sendcount

destNode = (self.rank.value + 2**step) % size
srcNode = (self.rank.value - 2**step) % size

send_request = MPI_Request()
recv_request = MPI_Request()

## send continguous

self. MPI_Isend((recvbuf, sendindex), sendcnt, sendtype
MPIL_Int(destNode), msgUid, comm, send_request)

self. MPI_Irecv((recvbuf, recvindex), sendcnt, recvtype
MPI_Int(srcNode), msgUid, comm, recv_request)

self.MPI_Waitall(2, [send_request, recv_request], stat

## change the order
## last rank will be in order
if self.rank.value < (size-1):
## move one chunk each time
for i in xrange(size - self.rank.value - 1):
recvbuf.extend(recvbuf[:sendcount])
del recvbuf[:sendcount]

return MPI_SUCCESS

def MPI_Allgather_Bruck( self, sendbuf, sendcount, sendt

recvcount, recvtype, comm ):
msgUid = self.getMsgUid()
size = comm.size()
power2 = math.floor(math.log(size, 2))
steps = int(math.ceil(math.log(size, 2)))
statuses = [MPI_Status(), MPI_Status()]
## copy self sendbuf to recvbuf
recvbuf{0:sendcount] = sendbuf
## always send from first one
sendindex = 0

uses)

ype, recvbuf,
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for step in xrange(steps):
recvindex = 2*step * sendcount
if (step == power2):
## the last stage for non-power of 2
sendcnt= (size - 2**step) * sendcount
else:
sendcnt = 2**step * sendcount
destNode = (self.rank.value - 2**step) % size
srcNode = (self.rank.value + 2**step) % size
send_request = MPI_Request()
recv_request = MPI_Request()

self.MPI_Isend((recvbuf, sendindex), sendcnt, sendtype ,
MPI_Int(destNode), msgUid, comm, send_request)

self.MPI_Irecv((recvbuf, recvindex), sendcnt, recvtype
MPI_Int(srcNode), msgUid, comm, recv_request)

self. MPI_Waitall(2, [send_request, recv_request], stat

## change the order
if self.rank.value > 0:
for i in xrange(size - self.rank.value):
recvbuf.extend(recvbuf[:sendcount])
del recvbuf[:sendcount]

return MPI_SUCCESS

uses)



