
usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

River
A Foundation for the Rapid Development of

Reliable Parallel Programming Systems

August 17, 2007

Greg Benson and Alex Fedosov

SciPy 2007



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

What is River?

‣ Reliable Virtual Resources

‣ A Python framework for parallel and 
distributed programming

‣ Prototype parallel programming systems

‣ Write parallel Python programs



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

River Overview

‣ River Core

‣ Discovery 

‣ Process naming and creation 

‣ Message passing

‣ State management

‣ River Extensions

‣ RPC/RMI, Trickle, MPI, MapReduce

 
 

 

 
 

 

 
 

 



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

River Benefits

‣ Small, easy to use core interface

‣ Written entirely in Python

‣ Dynamic typing for rapid prototyping

‣ Python goodies

‣ Heterogeneous (Use Python as a VM)

‣ State capture at language VM level

‣ Integrated checkpointing and migration



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Motivation

‣ Parallel programming is still hard

‣ The future: more cores, larger clusters

‣ Apps will have to utilize multiple processors

‣ Apps will have to tolerate failures

‣ The quest:

‣ Find the next set of programming models

‣ Incrementally improve current models



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Current Practice

‣ Design/development cycle (long)

‣ Specify (perhaps by committee or group)

‣ Prototype (Use C/C++/Java)

‣ Use prototype to provide feedback

‣ Examples

‣ MPI, X10, Fortress

‣ Early implementation decisions hard to undo



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

River Goals

‣ Extend Python’s rapid development capabilities 
to parallel systems

‣ Facilitate short design/implementation cycles

‣ Open up design space

‣ Enable prototypes to run on real HW

‣ Demonstrate scalability/feasibility



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Remainder of  Talk

‣ River Core

‣ River Extensions

‣ Remote Access and Invocation

‣ Trickle (simple task farming language)

‣ River MPI (rMPI)

‣ Related and Future Work



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

River Concepts

‣ Virtual machines (VMs)

‣ Python + River Core

‣ Virtual resources (VRs)

‣ Named with UUIDs

‣ Code, data, thread, and message queue

‣ Discover/allocate/deploy

‣ Flexible code execution

 

 

 
QVR

VM



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Executing VRs

  VM (Initiator)

 
 

vr_init

main

deploy()

deploy()

  VM

 
 

main

  VM

 
 

main

  VM

 
 

main

send()

send()

send()

QVR

VR

VR

Q

Q

QVR

deploy()



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Super Flexible Messaging

‣ Sending

‣ Receiving
(selective)

send(dest=VRID, text=’hello’)
send(dest=VRID, tag=’inputlist’, items = [1, 2, 3, 4])

stk = Stack(); stk.push(1); stk.push(2)
send(dest=VRID, data=stk)

m = recv()                 # Any message
m = recv(tag=’inputlist’)  # Specific attr and value
print m.items

m = recv(tag=’inputlist’, items=(lambda x:len(x) > 1))
m = recv(src=VRID, data=ANY)
print m.data.pop()



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Simple River Program

from socket import gethostname
from river.core.vr import VR

class simple (VR):

 def vr_init(self):

 
 discovered = self.discover()

 
 allocated = self.allocate(discovered)
 
 
 deployed = self.deploy(allocated, module=self.__module__)

 
 self.vrlist = [vm.uuid for vm in deployed]

 
 return True


 def main(self):

 
 if self.parent is None:

 
 
 for vr in self.vrlist:

 
 
 
 m = self.recv(src=vr)

 
 
 
 print m.myname

 
 else:

 
 
 self.send(dest=self.parent, myname=gethostname())



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

State Management

‣ Designed from the beginning

‣ Encapsulate local state in VR

‣ Only hooks to outside UUIDs

‣ Per-VR queues hold in-transit messages

‣ Transparent migration and checkpointing

‣ Internal and external support

 

 

 
QVR

VM



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Coordinated Checkpointing

‣ Algorithm

‣ Freeze all remote VRs (preemptively)

‣ Allow in-flight messages to settle

‣ Write frozen state (VR + queue)

‣ Unfreeze all remote VRs

‣ Mechanism is extensible

‣ State exclusion, diskless, app assisted, etc.



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

River Implementation

‣ One net thread, one Control VR

‣ Control handles VR creation, state

‣ TCP-based, connection caching (scalable)

‣ Broadcast-based discovery

‣ Super Flexible Messaging

‣ Queue matching

‣ Serialization (Pickle)

 
 
 

Q
Net

ControlVR

 
 

Q

AppVR



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

State Implementation

‣ Keep soft VR state separate from hard VR state

‣ Two VR classes: VR and VRI (internal)

‣ VR has a reference to host VRI

‣ Stackless: run VR as a tasklet in a VRI thread

‣ Generate atomic system calls (VRI calls)

‣ State capture: unlink VRI reference from VR

 
 
VR Q

code

 
 

send()
recv()

VRI
Q

 
 
VR

code

TaskletThread

self.vri



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

River Complexity

Component LOC

River Core 3701

RAI (remote invocation) 531

Trickle (task farming) 375

rMPI 882

rMPI derived datatypes 246

rMPI non-blocking communication 441

rMPI optimized collectives 335

MapReduce 511



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

‣ Remote Access and Invocation (RAI)

‣ RPC, RMI, and remote data access

‣ Create and access functions, objects, data on 
remote VRs

‣ Built on top of the River core

‣ Unrestricted mode

Remote Invocation

r = RemoteVR(server, self)
print r.add(1,2,3)



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Trickle

‣ Simple task farming language

‣ Put code/data on remote VMs

‣ Execute sequentially or in parallel

def foo(x):
    return x + 10
 
vmlist = connect()
inject(vmlist, foo)
results = [vm.foo(10) for vm in vmlist]
print results

$ trickle exsimple.py 
[trickle: discovered 4 VMs] 
[20, 20, 20, 20]

VM

 VR

inject/use

VM

 VR

VM

 VR

VM

 VR



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Parallel Invocation

‣ Fork/join 
paradigm

‣ Dynamic
scheduling

def foo(x):
    return x + 10
 
vmlist = connect()
inject(vmlist, foo)
hlist = fork(vmlist, foo, range(len(vmlist)))

print join(hlist)

def foo(x):
    return sum(x)
 
vmlist = connect()
inject(vmlist, foo)
results = forkwork(vmlist, foo, range(100), chunksize=10)

print sum(results)



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Word Frequency
def wordcount(files):

 # count words in given files (13 lines)
def mergecounts(dlist):

 # merge resulting count dictionaries (8 lines)

# Command line processing (9 lines)

vmlist = connect(n)
inject(vmlist, wordcount)
rlist = forkwork(vmlist, wordcount, files, chunksize=cs)
final = mergecounts(rlist)

Penguin Cluster

AMD Opterons
(Dual dual-core) 2.0GHz
4 GB RAM, GigE

One VM per node



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

River MPI (rMPI)

‣ Partial implementation of MPI 1.2 in River

‣ Most p-to-p and collectives

‣ Easy to read and understand

‣ Models C MPI interface

‣ Experiment with different algorithms

‣ Use inheritance to add functionality

‣ Derived data types, non-blocking comm



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

rMPI Hello World
from mpi import *

class Hello(mpi):


 def main(self):
 


 
 self.MPI_Init()

 
 rank = mpi_Rank()

 
 np   = mpi_Size()

 
 self.MPI_Comm_rank( MPI_COMM_WORLD, rank )

 
 self.MPI_Comm_size( MPI_COMM_WORLD, np )

 
 status = MPI_Status()


 
 recvbuf = [ 0.0 ]

 
 sendbuf = [ rank.value * 100.0 ]


 
 print 'Hello from rank %d' % ( rank.value )


 
 if rank.value == 0:

 
 
 for i in xrange( 1, np.value ):

 
 
 
 self.MPI_Recv( recvbuf, 1, MPI_FLOAT, i, 0, MPI_COMM_WORLD, status )

 
 
 
 print 'From rank %d: %f' % ( i, recvbuf[0] )

 
 else:

 
 
 # if not rank 0, send value to rank 0

 
 
 print 'Rank %d sending %f' % ( rank.value, sendbuf[0] )

 
 
 self.MPI_Send( sendbuf, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD )


 
 self.MPI_Finalize()



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

rMPI Conjugate Gradient

Penguin Cluster

AMD Opterons
(Dual dual-core) 2.0GHz
4 GB RAM, GigE

One VM/Process per node



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Dissemination Barrier

   def MPI_Barrier(self, comm):
        
        root = mpi_Rank(0)
        sendbuf = [1]; recvbuf = [0]
        msgUid = self.getMsgUid()
        status = MPI_Status()
        
        i = self.rank.value
        p = comm.size()
        steps = int(math.ceil(math.log(p, 2)))
        for k in xrange(steps):
            dest = (i + 2**k) % p
            src = (i - 2**k + p) % p
            self.MPI_Send(sendbuf, 1, MPI_INT, mpi_Rank(dest), msgUid, comm)
            self.MPI_Recv(recvbuf, 1, MPI_INT, mpi_Rank(src), msgUid, comm, status)
        return MPI_SUCCESS



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Experience

‣ Trickle

‣ Design: about 2 days

‣ First implementation: about 1 evening

‣ Refinements: easy (e.g., dynamic scheduling)

‣ rMPI

‣ First implementation: about 1 month

‣ Used in a grad parallel computing class



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Related Work

‣ Python

‣ PyMPI, MYMPI, PYRO, Twisted, others

‣ IPython (Trickle-like functionality)

‣ VM level checkpointing and migration

‣ Many Java-based implementations



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Future Work

‣ Refine the River Core

‣ Further experimentation with rMPI and Trickle

‣ Evaluate different checkpointing schemes

‣ Develop new extensions: GAS-like language

‣ Automate the translation of a River 
implementation into a C/Java implementation



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

River Website and Release

‣ River papers

‣ River overview

‣ Super Flexible Messaging (SFM)

‣ Trickle

‣ Download River and Extensions

http://www.cs.usfca.edu/river

http://www.cs.usfca.edu/river
http://www.cs.usfca.edu/river

