River

A Foundation for the Rapid Development of
Reliable Parallel Programming Systems

August | /,2007

Greg Benson and Alex Fedosov

SciPy 2007



VWhat Is River?

» Reliable Virtual Resources

» A Python framework for parallel and
distributed programming

» Prototype parallel programming systems

» Write parallel Python programs

usft SciPy 2007

department of computer science



River Overview

» River Core g/ /ﬁ
» Discovery =L S
_\ - $x

» Process naming and creation

» Message passing —
» State management

» River Extensions

» RPC/RMI, Trickle, MPI, MapReduce

usft SciPy 2007

department of computer science



River Benefits

» Small, easy to use core Interface

» Written entirely in Python

» Dynamic typing for rapid prototyping

» Python goodies
» Heterogeneous (Use Python as a VM)
» State capture at language VM level

» Integrated checkpointing and migration

usf SciPy 2007

department of computer science



Motivation

» Parallel programming is still hard

)

he future: more cores, larger clusters

» Apps will have to utilize multiple processors

» Apps will have to tolerate fallures

» The quest:

usf

department of computer science

» Find the next set of programming models

» Incrementally improve current models

SciPy 2007



Current Practice

» Design/development cycle (long)
» Specify (perhaps by committee or group)
» Prototype (Use C/C++/Java)
» Use prototype to provide feedback

» Examples

» MPI, X10, Fortress

» Early implementation decisions hard to undo

usf SciPy 2007

department of computer science



River Goals

» Extend Python's rapid development capabillities
to parallel systems

» Facilitate short design/implementation cycles
» Open up design space
» Enable prototypes to run on real HW

» Demonstrate scalability/feasibility

usf SciPy 2007

department of computer science



Remainder of lalk

» River Core

» River Extensions
» Remote Access and Invocation
» TIrickle (simple task farming language)
» River MPI (rMPl)

» Related and Future Work

usf SciPy 2007

department of computer science



River Concepts

(VM

» Virtual machines (VMs)
» Python + River Core

VR

» Virtual resources (VRs)
» Named with UUIDs

» Code, data, thread, and message queue
» Discover/allocate/deploy

» Flexible code execution

usf SciPy 2007

department of computer science



VM (Initiator)

7

VR

)

Q

vr_init

usf

department of computer science

Executing VRS

VM

VR

- - = = = = _>
~
/. .
! VM
/ e N

VM

Vv

Rh
Q%

/ )
send()
SciPy 2007



Super Flexible Messaging

} Seﬂdiﬂg send(dest=VRID, text=’hello’)
send(dest=VRID, tag=’1inputlist’, items = [1, 2, 3, 4])

stk = Stack(); stk.push(1); stk.push(2)
send(dest=VRID, data=stk)

} ReCe|V|ﬂg m = recv() # Any message
; m = recv(tag="1inputlist’) # Specific attr and value
(SeleCtlve> print m.items

m = recv(tag="1inputlist’, items=(lambda x:len(x) > 1))
m = recv(src=VRID, data=ANY)
print m.data.pop()

usf SciPy 2007

department of computer science



SImple River Program

from socket import gethostname
from river.core.vr import VR

class simple (VR):
def vr_init(self):
discovered = self.discover()
adllocated = self.allocate(discovered)
deployed = self.deploy(allocated, module=self.__module__)
self.vrlist = [vm.uuid for vm in deployed]
return True

def main(self):
1f self.parent 1is None:
for vr in self.vrlist:
m = self.recv(src=vr)
print m.myname
else:

self.send(dest=self.parent, myname=gethostname())

E.ejpageiof computer science SCl Py 2007



State Management

(VM
» Designed from the beginning " (6\3
» Encapsulate local state in VR —
» Only hooks to outside UUIDs
S—

» Per-VR queues hold in-transit messages
» ITransparent migration and checkpointing

» Internal and external support

usf SciPy 2007

department of computer science



Coordinated Checkpointing

» Algorithm
» Freeze all remote VRs (preemptively)
» Allow In-flight messages to settle
» Write frozen state (VR + queue)
» Unfreeze all remote VRs
» Mechanism Is extensible

» State exclusion, diskless, app assisted, etc.

usf SciPy 2007

department of computer science



River Implementation

» One net thread, one Control VR
» Control handles VR creation, state
» TCP-based, connection caching (scalable)

» Broadcast-based discovery

ControlVR AppVR

» Super Flexible Messaging 3 3 1[E 9

—/ —/

» Queue matching

» Serialization (Pickle)

usf SciPy 2007

department of computer science




State Implementation

L
» Keep soft VR state separate from hard VR state

» Iwo VR classes:VR and VRI (internal)
» VR has a reference to host VR

» Stackless: run VR as a tasklet in a VRI thread
» Generate atomic system calls (VRI calls)

» State capture: unlink VRI reference from VR

Thread Tasklet
( ) ( ) (
VR (Qq] VRI VR
- DI dR
self.vri
usf — || =
code send() code :

department of computer science recv() SCle 2007




River Complexity

Component | LoC

River Core 3701
RAI (remote invocation) 531
Trickle (task farming) 375
rMP 882
rMPI derived datatypes 246
rMPI non-blocking communication 44|
rMPI optimized collectives 335
MapReduce 511

SciPy 2007



Remote Invocation

» Remote Access and Invocation (RAI)
» RPC, RMI, and remote data access

» Create and access functions, objects, data on
remote VRs

» Built on top of the River core

r = RemoteVR(server, self)

» Unrestricted mode print r.add(1,2,3)

usf SciPy 2007

department of computer science



Irickle

» Simple task farming language
» Put code/data on remote VMs

» Execute sequentially or in parallel

(VM

VR def foo(x):
return x + 10
inject/use
(VM /— (VM 1 |[vmlist = connect()
VR VR inject(vmlist, foo)
> results = [vm.foo(10) for vm in vmlist]

print results

(VM

S S

VR $ trickle exsimple.py
3 [trickle: discovered 4 VMs]
USf [20, 20, 20, 20]
_ N SciPy 2007
department of computer science



Parallel Invocation

» Fork/join | def foo0o:
: return x + 10
paradigm

vmlist = connect()
inject(vmlist, foo)

hlist = fork(vmlist, foo, range(len(vmlist)))

print join(Chlist)

» Dynamic | def footo:
: return sum(x)
scheduling

vmlist = connect()
inject(vmlist, foo)

results = forkwork(vmlist, foo, range(100), chunksize=10)

print sum(results)

dLerage-Eof computer science SCl Py 2007



VWord Frequency

def wordcount(files):
# count words in given files (13 lines)
def mergecounts(dlist):
# merge resulting count dictionaries (8 lines)

# Command 1line processing (9 lines)

vmlist = connect(n)

inject(vmlist, wordcount)

rlist = forkwork(vmlist, wordcount, files, chunksize=cs)
final = mergecounts(rlist)

Data Size: 63,326 files (285 MB)

—— wireq

u Sf MNumber of Frocesses

department of computer science

1 2 3 4 5 6

Penguin Cluster

AMD Opterons
(Dual dual-core) 2.0GHz
4 GB RAM, GigkE

One VM per node

SciPy 2007



River MPI (FMPI)

» Partial implementation of MP| [.2 in River
» Most p-to-p and collectives

» Easy to read and understand

» Models C MPI interface

» Experiment with different algorithms

» Use inheritance to add functionalrty

» Derived data types, non-blocking comm

usf SciPy 2007

department of computer science



-MPIl Hello World

from mpi import *

class Hello(mpi):

def main(self):
self .MPI_Init()
rank = mpi_Rank()
np = mpi_Size()
self .MPI_Comm_rank( MPI_COMM_WORLD, rank )

self.MPI_Comm_size( MPI_COMM_WORLD, np )
status = MPI_Status()

recvbuf = [ 0.0 ]
sendbuf [ rank.value * 100.0 ]

print '"Hello from rank %d' % ( rank.value )

if rank.value ==
for 1 in xrange( 1, np.value ):
self .MPI_Recv( recvbuf, 1, MPI_FLOAT, i, @, MPI_COMM_WORLD, status )
print 'From rank %d: %f" % ( 1, recvbuf[0] )

else:
# 1f not rank @, send value to rank 0
print 'Rank %d sending %f' % ( rank.value, sendbuf[0] )
self.MPI_Send( sendbuf, 1, MPI_FLOAT, @, @, MPI_COMM_WORLD )

self.MPI_Finalize()

usf

department of computer science

SciPy 2007



r™MPl Conjugate Gradient

6000 | ID.E;lt.':l SIIEIZ 1024}{1052'4 dnuhlesl

—— Python/rMP1 (GigE)

5000

.

]

=

]
I

000

Time (seconds)
i (8]
o
o
o
|

[

=

=

=
T

1 2 3 4 5 6 7

25| — CI/LAM (GigE)

conds
[ ] (]
o o
1 1

1 2 3 1 5 6 7
MNumber of Processes

usf

department of computer science

Penguin Cluster

AMD Opterons
(Dual dual-core) 2.0GHz
4 GB RAM, GigE

One VM/Process per node

SciPy 2007



Dissemination Barrier

def MPI_Barrier(self, comm):

root = mpi_Rank(@)

sendbuf = [1]; recvbuf = [0]
msgUid = self.getMsgUid()
status = MPI_Status()

1 = self.rank.value
p = comm.size()
steps = int(math.ceil(math.log(p, 2)))
for k in xrange(steps):
dest = (1 + 2*¥*k) % p
src = (1 - 2*¥*k + p) % p
self.MPI_Send(sendbuf, 1, MPI_INT, mpi_Rank(dest), msgUid, comm)
self .MPI_Recv(recvbuf, 1, MPI_INT, mpi_Rank(src), msgUid, comm, status)
return MPI_SUCCESS

usft SciPy 2007

department of computer science



Experience

» Irickle

» Design: about 2 days

» First implementation: about | evening

» Refinements: easy (e.g., dynamic scheduling)
» r™MP]

» First mplementation: about | month

» Used in a grad parallel computing class

usf SciPy 2007

department of computer science



Related Work

» Python
» PyMPI, MYMPI, PYRO, Twisted, others
» IPython (Trickle-like functionality)

» VM level checkpointing and migration

» Many Java-based implementations

usf SciPy 2007

department of computer science



Future VWork

» Refine the River Core

» Further experimentation with rMPl and Trickle

» Evaluate different checkpointing schemes

» Develop new extensions: GAS-like language

» Automate the translation of a River

Im

usf

department of computer science

blementation into a C/Java implementation

SciPy 2007



River VWebsite and Release

http://www.cs.usfca.edu/river

» River papers
» River overview
» Super Flexible Messaging (SFM)
» Trickle

» Download River and Extensions

usf SciPy 2007

department of computer science


http://www.cs.usfca.edu/river
http://www.cs.usfca.edu/river

