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What is River?

‣ Reliable Virtual Resources

‣ A Python framework for parallel and 
distributed programming

‣ Prototype parallel programming systems

‣ Write parallel Python programs
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River Overview

‣ River Core

‣ Discovery 

‣ Process naming and creation 

‣ Message passing

‣ State management

‣ River Extensions

‣ RPC/RMI, Trickle, MPI, MapReduce
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River Benefits

‣ Small, easy to use core interface

‣ Written entirely in Python

‣ Dynamic typing for rapid prototyping

‣ Python goodies

‣ Heterogeneous (Use Python as a VM)

‣ State capture at language VM level

‣ Integrated checkpointing and migration
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Motivation

‣ Parallel programming is still hard

‣ The future: more cores, larger clusters

‣ Apps will have to utilize multiple processors

‣ Apps will have to tolerate failures

‣ The quest:

‣ Find the next set of programming models

‣ Incrementally improve current models
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Current Practice

‣ Design/development cycle (long)

‣ Specify (perhaps by committee or group)

‣ Prototype (Use C/C++/Java)

‣ Use prototype to provide feedback

‣ Examples

‣ MPI, X10, Fortress

‣ Early implementation decisions hard to undo
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River Goals

‣ Extend Python’s rapid development capabilities 
to parallel systems

‣ Facilitate short design/implementation cycles

‣ Open up design space

‣ Enable prototypes to run on real HW

‣ Demonstrate scalability/feasibility
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Remainder of  Talk

‣ River Core

‣ River Extensions

‣ Remote Access and Invocation

‣ Trickle (simple task farming language)

‣ River MPI (rMPI)

‣ Related and Future Work



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

River Concepts

‣ Virtual machines (VMs)

‣ Python + River Core

‣ Virtual resources (VRs)

‣ Named with UUIDs

‣ Code, data, thread, and message queue

‣ Discover/allocate/deploy

‣ Flexible code execution
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Executing VRs
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Super Flexible Messaging

‣ Sending

‣ Receiving
(selective)

send(dest=VRID, text=’hello’)
send(dest=VRID, tag=’inputlist’, items = [1, 2, 3, 4])

stk = Stack(); stk.push(1); stk.push(2)
send(dest=VRID, data=stk)

m = recv()                 # Any message
m = recv(tag=’inputlist’)  # Specific attr and value
print m.items

m = recv(tag=’inputlist’, items=(lambda x:len(x) > 1))
m = recv(src=VRID, data=ANY)
print m.data.pop()
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Simple River Program

from socket import gethostname
from river.core.vr import VR

class simple (VR):

 def vr_init(self):

 
 discovered = self.discover()

 
 allocated = self.allocate(discovered)
 
 
 deployed = self.deploy(allocated, module=self.__module__)

 
 self.vrlist = [vm.uuid for vm in deployed]

 
 return True


 def main(self):

 
 if self.parent is None:

 
 
 for vr in self.vrlist:

 
 
 
 m = self.recv(src=vr)

 
 
 
 print m.myname

 
 else:

 
 
 self.send(dest=self.parent, myname=gethostname())
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State Management

‣ Designed from the beginning

‣ Encapsulate local state in VR

‣ Only hooks to outside UUIDs

‣ Per-VR queues hold in-transit messages

‣ Transparent migration and checkpointing

‣ Internal and external support
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Coordinated Checkpointing

‣ Algorithm

‣ Freeze all remote VRs (preemptively)

‣ Allow in-flight messages to settle

‣ Write frozen state (VR + queue)

‣ Unfreeze all remote VRs

‣ Mechanism is extensible

‣ State exclusion, diskless, app assisted, etc.
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River Implementation

‣ One net thread, one Control VR

‣ Control handles VR creation, state

‣ TCP-based, connection caching (scalable)

‣ Broadcast-based discovery

‣ Super Flexible Messaging

‣ Queue matching

‣ Serialization (Pickle)
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State Implementation

‣ Keep soft VR state separate from hard VR state

‣ Two VR classes: VR and VRI (internal)

‣ VR has a reference to host VRI

‣ Stackless: run VR as a tasklet in a VRI thread

‣ Generate atomic system calls (VRI calls)

‣ State capture: unlink VRI reference from VR
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River Complexity

Component LOC

River Core 3701

RAI (remote invocation) 531

Trickle (task farming) 375

rMPI 882

rMPI derived datatypes 246

rMPI non-blocking communication 441

rMPI optimized collectives 335

MapReduce 511



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

‣ Remote Access and Invocation (RAI)

‣ RPC, RMI, and remote data access

‣ Create and access functions, objects, data on 
remote VRs

‣ Built on top of the River core

‣ Unrestricted mode

Remote Invocation

r = RemoteVR(server, self)
print r.add(1,2,3)



usf  CSCS
UNIVERSITY of  SAN FRANCISCO
department of computer science

SciPy 2007

Trickle

‣ Simple task farming language

‣ Put code/data on remote VMs

‣ Execute sequentially or in parallel

def foo(x):
    return x + 10
 
vmlist = connect()
inject(vmlist, foo)
results = [vm.foo(10) for vm in vmlist]
print results

$ trickle exsimple.py 
[trickle: discovered 4 VMs] 
[20, 20, 20, 20]
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 VR

VM

 VR
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Parallel Invocation

‣ Fork/join 
paradigm

‣ Dynamic
scheduling

def foo(x):
    return x + 10
 
vmlist = connect()
inject(vmlist, foo)
hlist = fork(vmlist, foo, range(len(vmlist)))

print join(hlist)

def foo(x):
    return sum(x)
 
vmlist = connect()
inject(vmlist, foo)
results = forkwork(vmlist, foo, range(100), chunksize=10)

print sum(results)
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Word Frequency
def wordcount(files):

 # count words in given files (13 lines)
def mergecounts(dlist):

 # merge resulting count dictionaries (8 lines)

# Command line processing (9 lines)

vmlist = connect(n)
inject(vmlist, wordcount)
rlist = forkwork(vmlist, wordcount, files, chunksize=cs)
final = mergecounts(rlist)

Penguin Cluster

AMD Opterons
(Dual dual-core) 2.0GHz
4 GB RAM, GigE

One VM per node
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River MPI (rMPI)

‣ Partial implementation of MPI 1.2 in River

‣ Most p-to-p and collectives

‣ Easy to read and understand

‣ Models C MPI interface

‣ Experiment with different algorithms

‣ Use inheritance to add functionality

‣ Derived data types, non-blocking comm
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rMPI Hello World
from mpi import *

class Hello(mpi):


 def main(self):
 


 
 self.MPI_Init()

 
 rank = mpi_Rank()

 
 np   = mpi_Size()

 
 self.MPI_Comm_rank( MPI_COMM_WORLD, rank )

 
 self.MPI_Comm_size( MPI_COMM_WORLD, np )

 
 status = MPI_Status()


 
 recvbuf = [ 0.0 ]

 
 sendbuf = [ rank.value * 100.0 ]


 
 print 'Hello from rank %d' % ( rank.value )


 
 if rank.value == 0:

 
 
 for i in xrange( 1, np.value ):

 
 
 
 self.MPI_Recv( recvbuf, 1, MPI_FLOAT, i, 0, MPI_COMM_WORLD, status )

 
 
 
 print 'From rank %d: %f' % ( i, recvbuf[0] )

 
 else:

 
 
 # if not rank 0, send value to rank 0

 
 
 print 'Rank %d sending %f' % ( rank.value, sendbuf[0] )

 
 
 self.MPI_Send( sendbuf, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD )


 
 self.MPI_Finalize()
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rMPI Conjugate Gradient

Penguin Cluster

AMD Opterons
(Dual dual-core) 2.0GHz
4 GB RAM, GigE

One VM/Process per node
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Dissemination Barrier

   def MPI_Barrier(self, comm):
        
        root = mpi_Rank(0)
        sendbuf = [1]; recvbuf = [0]
        msgUid = self.getMsgUid()
        status = MPI_Status()
        
        i = self.rank.value
        p = comm.size()
        steps = int(math.ceil(math.log(p, 2)))
        for k in xrange(steps):
            dest = (i + 2**k) % p
            src = (i - 2**k + p) % p
            self.MPI_Send(sendbuf, 1, MPI_INT, mpi_Rank(dest), msgUid, comm)
            self.MPI_Recv(recvbuf, 1, MPI_INT, mpi_Rank(src), msgUid, comm, status)
        return MPI_SUCCESS
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Experience

‣ Trickle

‣ Design: about 2 days

‣ First implementation: about 1 evening

‣ Refinements: easy (e.g., dynamic scheduling)

‣ rMPI

‣ First implementation: about 1 month

‣ Used in a grad parallel computing class
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Related Work

‣ Python

‣ PyMPI, MYMPI, PYRO, Twisted, others

‣ IPython (Trickle-like functionality)

‣ VM level checkpointing and migration

‣ Many Java-based implementations
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Future Work

‣ Refine the River Core

‣ Further experimentation with rMPI and Trickle

‣ Evaluate different checkpointing schemes

‣ Develop new extensions: GAS-like language

‣ Automate the translation of a River 
implementation into a C/Java implementation
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River Website and Release

‣ River papers

‣ River overview

‣ Super Flexible Messaging (SFM)

‣ Trickle

‣ Download River and Extensions

http://www.cs.usfca.edu/river

http://www.cs.usfca.edu/river
http://www.cs.usfca.edu/river

